• Title/Summary/Keyword: hole argument

Search Result 3, Processing Time 0.022 seconds

Leibniz-Clark Controversy on the Nature of Space and Hole Argument (공간의 본성에 대한 라이프니츠-클라크 논쟁과 홀 논변)

  • Yang, Kyoung-eun
    • Journal of Korean Philosophical Society
    • /
    • v.144
    • /
    • pp.235-256
    • /
    • 2017
  • This essay considers Leibniz-Clark correspondence on the nature of space and hole argument. The ontology of space had been debated under the name of substantivalism-relationism controversy. The debates between the two parties are concerned with the nature of existence of parts of space-time. Substantivalism claims that the point of space-time has existence analogous to that of material substance. Relationism argues that space-time should be understood as the framework of possible spatio-temporal relations between bodies. Although these two approaches attempt to respect theoretical context, it seems that the problems of these two interpretive schemes stems from the lack of understanding of the structure of space-time theories, especially how space-time is connected with the laws of motion. In order to appreciate the substance-relation controversy without deviating from the context of space-time theories, it is necessary then to capture how space-time theories are constituted. This essay offers the clear connection of ontology of space-time with present practices of theoretical physicists.

How Can We Erase States Inside a Black Hole?

  • Hwang, Junha;Park, Hyosub;Yeom, Dong-han;Zoe, Heeseung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1420-1430
    • /
    • 2018
  • We investigate an entangled system, which is analogous to a composite system of a black hole and Hawking radiation. If Hawking radiation is well approximated by an outgoing particle generated from pair creation around the black hole, such a pair creation increases the total number of states. There should be a unitary mechanism to reduce the number of states inside the horizon for black hole evaporation. Because the infalling antiparticle has negative energy, as long as the infalling antiparticle finds its partner such that the two particles form a separable state, one can trace out such a zero energy system by maintaining unitarity. In this paper, based on some toy model calculations, we show that such a unitary tracing-out process is only possible before the Page time while it is impossible after the Page time. Hence, after the Page time, if we assume that the process is unitary and the Hawking pair forms a separable state, the internal number of states will monotonically increase, which is supported by the Almheiri-Marolf-Polchinski-Sully (AMPS) argument. In addition, the Hawking particles cannot generate randomness of the entire system; hence, the entanglement entropy cannot reach its maximum. Based on these results, we modify the correct form of the Page curve for the remnant picture. The most important conclusion is this: if we assume unitarity, semi-classical quantum field theory, and general relativity, then the black hole should violate the Bekenstein-Hawking entropy bound around the Page time at the latest; hence, the infinite production arguments for remnants might be applied for semi-classical black holes, which seems very problematic.

Scalar Perturbation and Stability of a New Wormhole in Einstein-Born-Infeld Gravity (아인슈타인-본-인펠트 중력 이론에서 새로운 웜홀의 스칼라장 섭동과 안정성)

  • Kim, Jin Young
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1262-1267
    • /
    • 2018
  • We introduce a new method to construct wormholes without adopting exotic matters in Einstein-Born-Infeld gravity with a negative cosmological constant. Contrary to the conventional method, the throat of the wormhole is located at the point where the metric solutions are joined smoothly. Thus, exotic matters are not needed to sustain the throat. We consider the behavior of a minimally coupled scalar field to study the stability of the new wormhole. If we define the quasinormal mode of the scalar field as the purely ingoing flux at the throat of the wormhole, the stability of wormhole can be discussed in analogy with the argument that we use for the stability of a black hole. Because an analytic solution can not be found, we suggest a formalism to find quasinormal modes numerically. The crucial difference from the black hole case is that the coefficient of the second-order derivative term of the radial equation is expanded from n = -1, which is contrary to the black hole case where it is expanded from n = 0.