• Title/Summary/Keyword: historical structures

Search Result 285, Processing Time 0.026 seconds

Seismic vulnerability and preservation of historical masonry monumental structures

  • Dogangun, Adem;Sezen, Halil
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.83-95
    • /
    • 2012
  • Seismic damage and vulnerability of five historical masonry structures surveyed after the 1999 Kocaeli and Duzce, Turkey earthquakes are discussed in this paper. The structures are located in two neighboring cities that have been struck by five very large ($M_s{\geq}7.0$) earthquakes during the $20^{th}$ century alone. Older masonry mosques with arches and domes and their masonry minarets (slender towers) were among the most affected structures in this highly seismic region. While some of the religious and historical structures had virtually no damage, most structures suffered significant damage or collapsed. In the city of Bolu, for example, approximately 600-year-old Imaret, 500-year-old Kadi, 250-year-old Sarachane, and 100-year-old Yildirim Bayezid mosques suffered substantial structural damage after the 1999 earthquakes. Another historical mosque surveyed in Duzce partially collapsed. Most common factors contributing to deterioration of historical structures are also presented. Furthermore, a brief overview of issues associated with analysis and modeling of historical masonry structures is provided.

Aseismic protection of historical structures using modern retrofitting techniques

  • Syrmakezis, C.A.;Antonopoulos, A.K.;Mavrouli, O.A.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.233-245
    • /
    • 2008
  • For historical masonry structures existing in the Mediterranean area, structural strengthening is of primary importance due to the continuous earthquake threat that is posed on them. Proper retrofitting of historical structures involves a thorough understanding of their structural pathology, before proceeding with any intervention measures. In this paper, a methodology is presented for the evaluation of the actual state of historical masonry structures, which can provide a useful tool for the seismic response assessment before and after the retrofitting. The methodology is mainly focused on the failure and vulnerability analysis of masonry structures using the finite element method. Using this methodology the retrofitting of historical structures with innovative techniques is investigated. The innovative technique presented here involves the exploitation of Shape Memory Alloy prestressed bars. This type of intervention is proposed because it ensures increased reversibility and minimization of interventions, in comparison with conventional retrofitting methods. In this paper, a case study is investigated for the demonstration of the proposed methodologies and techniques, which comprises a masonry Byzantine church and a masonry Cistern. Prestressed SMA alloy bars are placed into the load-bearing system of the structure. The seismic response of the non-retrofitted and the retrofitted finite element models are compared in terms of seismic energy dissipation and displacements diminution.

Nonlinear seismic response of a masonry arch bridge

  • Sayin, Erkut
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.483-494
    • /
    • 2016
  • Historical structures that function as a bridge from past to present are the cultural and social reflections of societies. Masonry bridges are one of the important historical structures. These bridges are vulnerable against to seismic action. In this study, linear and non-linear dynamic analyses of historical Nadir Bridge are assessed. The bridge is modelled with three dimensional finite elements. For the seismic effect, artificial acceleration records are generated considering the seismic characteristics of the region where the bridge is located. Seismic response of the bridge is investigated.

Response evaluation of historical crooked minaret under wind and earthquake loadings

  • Ural, Ali;Dogangun, Adem;Meraki, Sakir
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.345-359
    • /
    • 2013
  • Turkey has been hosted various civilizations throughout centuries and it has become one of the oldest settlements all over the world due to the geographical location. Therefore, it has accommodated innumerable historical structures remain from the past civilizations. Protection and conservation of these historical constructions should be the major points for continuity of history. Crooked minaret is one of between these historical invaluable structures. It is located at the city of Aksaray and it dates back approximately 800 years. The minaret has lost its vertical position in time and bends on the North-West direction. In this study, general information is given about minarets and some restoration recommendations are given for crooked minaret based on performed some finite element structural analyses. These analyses are considered into three cases; 1-Dead loading, 2-Wind loading, and 3-Earthquake loadings. Results from the analyses are discussed detailed and some useful recommendations are given in the end of the study.

Material Properties of Structural Steel used in Modern Historical Heritage of Busan and Gyeongsang in the 1930-1940s (1930-40년대 부산·경상지역의 근대 역사문화유산에 사용된 강재의 재료적 특성)

  • Ahn, Jae-Cheol;Song, Jong-Mok
    • Journal of architectural history
    • /
    • v.23 no.6
    • /
    • pp.39-46
    • /
    • 2014
  • In this study, we evaluated the chemical and physical properties of structural steel, which is the most basic material for steel structures and reinforcement concrete structures in modern period. We theorized the technical data for the research of technical history of modern heritage structures by analyzing the product system and its quality control of structural steel used in modern historical heritages. The results of this study are as follow; first, the rounded bars were used in most of modern heritage structures. But in the case of Waegwan railroad bridge, the deformed bars were used in spit of not using in Japan after the great earthquake of Kantou. Second, the structural steel was good in terms of quality control, but It has brittle properties because it was not manufactured by heat treatment process.

A study on seismic behaviour of masonry mosques after restoration

  • Altunisik, Ahmet C.;Bayraktar, Alemdar;Genc, Ali F.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1331-1346
    • /
    • 2016
  • Historical masonry structures have an important value for cultures and it is essential for every society to strengthen them and confidently transfer to the future. For this reason, determination of the seismic earthquake response, which is the most affecting factor to cause the damage at these structures, gain more importance. In this paper, the seismic earthquake behaviour of Kaya Çelebi Mosque, which is located in Turkey and the restoration process has still continued after 2011 Van earthquake, is determined. Firstly the dynamic modal analysis and subsequently the seismic spectral analysis are performed using the finite element model of the mosque constructed with restoration drawings in SAP2000 program. Maximum displacements, tensile, compressive and shear stresses are obtained and presented with contours diagrams. Turkish Earthquake Code and its general technical specifications are considered to evaluate the structural responses. After the analyses, it is seen that the displacements and compressive/shear stresses within the code limits. However, tension stresses exceeded the maximum values at some local regions. For this mosque, this is in tolerance limits considering the whole structure. But, it can be said that the tension stresses is very important for this type of the structures, especially between the stone and mortar. So, some additional strengthening solutions considering the originality of historical structures may be applicable on maximum tensile regions.

The Historical Trend and New Paradigm of Youth Development Sector in USA (미국 청소년 개발사업의 역사적인 변천 과정 및 새로운 패러다임)

  • Oh, Hae Sub
    • Journal of Agricultural Extension & Community Development
    • /
    • v.8 no.1
    • /
    • pp.85-92
    • /
    • 2001
  • As the technology, global economy, and social structures and patterns have rapidly been changing since the 20th century, the forward-thinking leaders in the world begin to realize that they must embrace a new paradigm in management and organizational theories. The new idea of management is focused on equality rather than hierarchical structure, and more responsive to the external environment, more flexible, and better prepared to give customers what they want. From this new paradigm revolution, the nonprofit organizations like youth development organization are trying to approach and implement the new theories and models. This study attempted to introduce the historical trend and a new paradigm of youth development organizational structures and programs in the USA that may help Korea to improve youth organizations and programs. The youth development sector should create healthy, thriving organizations and structures that cultivate staff, programs, partnership between youth and adults, and community.

  • PDF

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.155-162
    • /
    • 2019
  • It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.

Influence of modified intended use on the seismic behavior of historical himis structures

  • Cakir, Ferit;Ergen, Yasar B.;Uysal, Habib;Dogangun, Adem
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.893-911
    • /
    • 2016
  • There are some modifications in the usage purpose of historical structures due to varying needs and changing conditions. However, those modifications can damage the structural system and the system stability. This study focuses on the investigation of the functional effects and usage modifications on the system stability. In this study, three different finite element models of the Hayati $Teknecio\breve{g}lu$ Mansion in Turkey are developed and the seismic responses of the models are investigated. Results of the analyses show that usage modifications might be considered as risky in terms of creating problems for seismic performance.

Evaluating effects of various water levels on long-term creep and earthquake performance of masonry arch bridges using finite difference method

  • Cavuslu, Murat
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.31-52
    • /
    • 2022
  • Investigating and evaluating the long-term creep behavior of historical buildings built on seismic zones is of great importance in terms of transferring these structures to future generations. Furthermore, assessing the earthquake behavior of historical structures such as masonry stone bridges is very important for the future and seismic safety of these structures. For this reason, in this study, earthquake analyses of a masonry stone bridge are carried out considering strong ground motions and various water levels. Tokatli masonry stone arch bridge that was built in the 10th century in Turkey-Karabük is selected for three-dimensional (3D) finite difference analyses and this bridge is modeled using FLAC3D software based on the three-dimensional finite difference method. Firstly, each stone element of the bridge is modeled separately and special stiffness parameters are defined between each stone element. Thanks to these parameters, the interaction conditions between each stone element are provided. Then, the Burger-Creep and Drucker-Prager material models are defined to arch material, rockfill material for evaluating the creep and seismic failure behaviors of the bridge. Besides, the boundaries of the 3D model of the bridge are modeled by considering the free-field and quiet boundary conditions, which were not considered in the past for the seismic behavior of masonry bridges. The bridge is analyzed for 6 different water levels and these water levels are 0 m, 30 m, 60 m, 70 m, 80 m, and 90 m, respectively. A total of 10 different seismic analyzes are performed and according to the seismic analysis results, it is concluded that historical stone bridges exhibit different seismic behaviors under different water levels. Moreover, it is openly seen that the water level is of great importance in terms of earthquake safety of historical stone bridges built in earthquake zones. For this reason, it is strongly recommended to consider the water levels while strengthening and analyzing the historical stone bridges.