• Title/Summary/Keyword: historical masonry

Search Result 53, Processing Time 0.02 seconds

Seismic vulnerability and preservation of historical masonry monumental structures

  • Dogangun, Adem;Sezen, Halil
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.83-95
    • /
    • 2012
  • Seismic damage and vulnerability of five historical masonry structures surveyed after the 1999 Kocaeli and Duzce, Turkey earthquakes are discussed in this paper. The structures are located in two neighboring cities that have been struck by five very large ($M_s{\geq}7.0$) earthquakes during the $20^{th}$ century alone. Older masonry mosques with arches and domes and their masonry minarets (slender towers) were among the most affected structures in this highly seismic region. While some of the religious and historical structures had virtually no damage, most structures suffered significant damage or collapsed. In the city of Bolu, for example, approximately 600-year-old Imaret, 500-year-old Kadi, 250-year-old Sarachane, and 100-year-old Yildirim Bayezid mosques suffered substantial structural damage after the 1999 earthquakes. Another historical mosque surveyed in Duzce partially collapsed. Most common factors contributing to deterioration of historical structures are also presented. Furthermore, a brief overview of issues associated with analysis and modeling of historical masonry structures is provided.

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.155-162
    • /
    • 2019
  • It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.

Aseismic protection of historical structures using modern retrofitting techniques

  • Syrmakezis, C.A.;Antonopoulos, A.K.;Mavrouli, O.A.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.233-245
    • /
    • 2008
  • For historical masonry structures existing in the Mediterranean area, structural strengthening is of primary importance due to the continuous earthquake threat that is posed on them. Proper retrofitting of historical structures involves a thorough understanding of their structural pathology, before proceeding with any intervention measures. In this paper, a methodology is presented for the evaluation of the actual state of historical masonry structures, which can provide a useful tool for the seismic response assessment before and after the retrofitting. The methodology is mainly focused on the failure and vulnerability analysis of masonry structures using the finite element method. Using this methodology the retrofitting of historical structures with innovative techniques is investigated. The innovative technique presented here involves the exploitation of Shape Memory Alloy prestressed bars. This type of intervention is proposed because it ensures increased reversibility and minimization of interventions, in comparison with conventional retrofitting methods. In this paper, a case study is investigated for the demonstration of the proposed methodologies and techniques, which comprises a masonry Byzantine church and a masonry Cistern. Prestressed SMA alloy bars are placed into the load-bearing system of the structure. The seismic response of the non-retrofitted and the retrofitted finite element models are compared in terms of seismic energy dissipation and displacements diminution.

Investigation on seismic isolation retrofit of a historical masonry structure

  • Artar, Musa;Coban, Keziban;Yurdakul, Muhammet;Can, Omer;Yilmaz, Fatih;Yildiz, Mehmet B.
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.501-512
    • /
    • 2019
  • In this study, seismic vulnerability assessment and seismic isolation retrofit of Bayburt Yakutiye Mosque is investigated. Bayburt Yakutiye Mosque was built in the early 19th century at about 30-meter distance to Coruh river in the center of Bayburt in Turkey. The walls of historical masonry structure were built with regional white and yellow stones and the domes of the mosque was built with masonry bricks. This study is completed in four basic phases. In first phase, experimental determination of the regional white stone used in the historical structure are investigated to determine mechanical properties as modulus of elasticity, poison ratio and compression strengths etc. The required information of the other materials such as masonry brick and the regional yellow stone are obtained from literature studies. In the second phase, three dimensional finite element model (FEM) of the historical masonry structure is prepared with 4738 shell elements and 24789 solid elements in SAP2000 software. In third phase, the vulnerability assessment of the historical mosque is researched under seismic loading such as Erzincan (13 March 1992), Kocaeli (17 August 1999) and Van (23 November 2011) earthquakes. In this phase, the locations where damage can occur are determined. In the final phase, rubber base isolators for seismic isolation retrofit is used in the macro model of historical masonry mosque to prevent the damage risk. The results of all analyses are comparatively evaluated in details and presented in tables and graphs. The results show that the application of rubber base isolators can prevent to occur the destructive effect of earthquakes.

Nonlinear seismic response of a masonry arch bridge

  • Sayin, Erkut
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.483-494
    • /
    • 2016
  • Historical structures that function as a bridge from past to present are the cultural and social reflections of societies. Masonry bridges are one of the important historical structures. These bridges are vulnerable against to seismic action. In this study, linear and non-linear dynamic analyses of historical Nadir Bridge are assessed. The bridge is modelled with three dimensional finite elements. For the seismic effect, artificial acceleration records are generated considering the seismic characteristics of the region where the bridge is located. Seismic response of the bridge is investigated.

Evaluating effects of various water levels on long-term creep and earthquake performance of masonry arch bridges using finite difference method

  • Cavuslu, Murat
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.31-52
    • /
    • 2022
  • Investigating and evaluating the long-term creep behavior of historical buildings built on seismic zones is of great importance in terms of transferring these structures to future generations. Furthermore, assessing the earthquake behavior of historical structures such as masonry stone bridges is very important for the future and seismic safety of these structures. For this reason, in this study, earthquake analyses of a masonry stone bridge are carried out considering strong ground motions and various water levels. Tokatli masonry stone arch bridge that was built in the 10th century in Turkey-Karabük is selected for three-dimensional (3D) finite difference analyses and this bridge is modeled using FLAC3D software based on the three-dimensional finite difference method. Firstly, each stone element of the bridge is modeled separately and special stiffness parameters are defined between each stone element. Thanks to these parameters, the interaction conditions between each stone element are provided. Then, the Burger-Creep and Drucker-Prager material models are defined to arch material, rockfill material for evaluating the creep and seismic failure behaviors of the bridge. Besides, the boundaries of the 3D model of the bridge are modeled by considering the free-field and quiet boundary conditions, which were not considered in the past for the seismic behavior of masonry bridges. The bridge is analyzed for 6 different water levels and these water levels are 0 m, 30 m, 60 m, 70 m, 80 m, and 90 m, respectively. A total of 10 different seismic analyzes are performed and according to the seismic analysis results, it is concluded that historical stone bridges exhibit different seismic behaviors under different water levels. Moreover, it is openly seen that the water level is of great importance in terms of earthquake safety of historical stone bridges built in earthquake zones. For this reason, it is strongly recommended to consider the water levels while strengthening and analyzing the historical stone bridges.

Composite Action in Masonry Columns Due to Damage and Creep Interaction (손상과 크리프의 상호작용에 의한 조적조 기둥의 복합거동)

  • Kim, Jung Joong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.27-32
    • /
    • 2014
  • Since the collapse of historical masonry structures in Europe in the late 1990's, the interests in understanding the long-term effect of masonry under sustained compressive stresses have increased. That requires combining the significance of time-dependent effects of creep with the effect of damage due to overstress to realize the evolution of cracks and then failure in masonry. Meanwhile, composite analysis of masonry columns was proven effective for realizing ultimate strength capacity of masonry column. In this study, a simplified mechanical model with step-by-step in time analysis was proposed to incorporate the interaction of damage and creep to estimate the maximum stress occurred in masonry. It was examined that the interaction of creep and damage in masonry can accelerate the failure of masonry.

Investigation of seismic safety of a masonry minaret using its dynamic characteristics

  • Basaran, Hakan;Demir, Ali;Ercan, Emre;Nohutcu, Halil;Hokelekli, Emin;Kozanoglu, Celalettin
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.523-538
    • /
    • 2016
  • Besides their spiritual significance, minarets are humanity's cultural heritage to the future generations due to their historical and architectural attraction. Currently, many historical masonry minarets are damaged and destroyed due to several reasons such as earthquakes and wind. Therefore, safety of these religiously significant buildings needs to be thoroughly investigated. The utmost care must be taken into account while investigating these structures. Our study investigated earthquake behavior of historical masonry minaret of Haci Mahmut Mosque. Destructive and non-destructive tests were carried out to determine earthquake safety of this structure. Brick-stone masonry material properties of structure were determined by accomplishing ultrasonic wave velocity, Schmidt Hammer, uniaxial compression (UAC) and indirect tension (Brazilian) tests. Determined material properties were used in the finite element analysis of the structure. To validate the numerical analysis, Operational Modal Analysis was applied to the structure and dynamic characteristics of the structure were determined. To this end, accelerometers were placed on the structure and vibrations due to environmental effects were followed. Finite element model of the minaret was updated using dynamic characteristics of the structure and the realistic numerical model of the structure was obtained. This numerical model was solved by using earthquake records of Turkey with time history analysis (THA) and the realistic earthquake behavior of the structure was introduced.

Structural response of historical masonry arch bridges under different arch curvature considering soil-structure interaction

  • Altunisik, Ahmet Can;Kanbur, Burcu;Genc, Ali Fuat;Kalkan, Ebru
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.141-151
    • /
    • 2019
  • In this paper, it is aimed to present a detail investigation about the comparison of static and dynamic behavior of historical masonry arch bridges considering different arch curvature. $G{\ddot{o}}derni$ historical masonry two-span arch bridge which is located in Kulp town, Diyarbakir, Turkey is selected as a numerical application. The bridge takes part in bowless bridge group and built in large measures than the others. The restoration projects were approved and rehabilitation studies have still continued. Finite element model of the bridge is constituted with special software to determine the static and dynamic behavior. To demonstrate the arch curvature effect, the finite element model are reconstructed considering different arch curvature between 2.86 m-3.76 m for first arch and 2.64 m-3.54 m for second arch with the increment of 0.10 m, respectively. Dead and live vehicle loads are taken into account during static analyses. 1999 Kocaeli earthquake ground motion record is considered for time history analyses. The maximum displacements, principal stresses and elastic strains are compared with each other using contour diagrams. It is seen that the arch curvature has more influence on the structural response of historical masonry arch bridges. At the end of the study, it is seen that with the increasing of the arch heights, the maximum displacements, minimum principal stresses and minimum elastic strains have a decreasing trend in all analyses, in addition maximum principal stresses and maximum elastic strains have unchanging trend up to optimum geometry.

FE model updating and seismic performance evaluation of a historical masonry clock tower

  • Gunaydin, Murat;Erturk, Esin;Genc, Ali Fuat;Okur, Fatih Yesevi;Altunisik, Ahmet Can;Tavsan, Cengiz
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.65-82
    • /
    • 2022
  • This paper presents a structural performance assessment of a historical masonry clock tower both using numerical and experimental process. The numerical assessment includes developing of finite element model with considering different types of soil-structure interaction systems, identifying the numerical dynamic characteristics, finite element model updating procedure, nonlinear time-history analysis and evaluation of seismic performance level. The experimental study involves determining experimental dynamic characteristics using operational modal analysis test method. Through the numerical and experimental processes, the current structural behavior of the masonry clock tower was evaluated. The first five experimental natural frequencies were obtained within 1.479-9.991 Hz. Maximum difference between numerical and experimental natural frequencies, obtained as 20.26%, was reduced to 4.90% by means of the use of updating procedure. According to the results of the nonlinear time-history analysis, maximum displacement was calculated as 0.213 m. The maximum and minimum principal stresses were calculated as 0.20 MPa and 1.40 MPa. In terms of displacement control, the clock tower showed only controlled damage level during the applied earthquake record.