• Title/Summary/Keyword: historical astronomy

Search Result 96, Processing Time 0.024 seconds

KIM YŎNG AND NEW POCH'ŎN'GA PUBLISHED IN 1792 (김영(金泳)과 1792년에 출간된 새로운 『보천가(步天歌)』)

  • Ahn, Sang-Hyeon
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.4
    • /
    • pp.147-157
    • /
    • 2011
  • I found evidence that Kim Y$\breve{o}$ng (金泳, 1749-1817) is the author of the Korean Poch'$\breve{o}$n'ga with New Charts published in 1792 by the Astronomical Bureau of the Chos$\breve{o}$n dynasty. I reconstructed a history of Kim Y$\breve{o}$ng from various literature remained in other persons' anthologies and governmental records. My findings on the author and publication year can help to solve the problem on the origin of star charts in the Poch'$\breve{o}$n'ga with New Charts. I also considered the changes of Chinese Bu-Tian-Ge and their star charts after Chongzhenglishu (崇禎曆書). I found that the new charts in the book of Huantiantushuo published by Li Mingche (李明徹, 1751-1832) in 1819 are approximately the same to those in the Poch'$\breve{o}$n'ga with New Charts by Kim Y$\breve{o}$ng in 1792.

THE ENVIRONMENT OF TYCHO: POSSIBLE INTERACTION WITH A MOLECULAR CLOUD

  • LEE J.-J.;KOO B.-C.;TATEMATSU K.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.223-224
    • /
    • 2004
  • The Tycho supernova remnant (SNR), as one of the few historical SNRs, has been widely studied in various wavebands and previous observations have shown evidence that Tycho is interacting with a dense ambient medium toward the northeast direction, In this paper, we report our high-resolution (16') $^{12}CO$ observation of the remnant using the Nobeyama 45m radio telescope. The Nobeyama data shows that a large molecular cloud surrounds the SNR along the northeastern boundary. We suggest that the Tycho SNR and the molecular cloud are both located in the Perseus arm and that the dense medium interacting with the SNR is possibly the molecular cloud. We also discuss the possible connection between the molecular cloud and the Balmer-dominated optical filaments, and suggest that the preshock gas may be accelerated within the cosmic ray and/or fast neutral precursor.

THE KOREAN 1592-1593 RECORD OF A GUEST STAR: AN 'IMPOSTOR' OF THE CASSIOPEIA A SUPERNOVA?

  • Park, Changbom;Yoon, Sung-Chul;Koo, Bon-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.233-238
    • /
    • 2016
  • The missing historical record of the Cassiopeia A (Cas A) supernova (SN) event implies a large extinction to the SN, possibly greater than the interstellar extinction to the current SN remnant. Here we investigate the possibility that the guest star that appeared near Cas A in 1592-1593 in Korean history books could have been an 'impostor' of the Cas A SN, i.e., a luminous transient that appeared to be a SN but did not destroy the progenitor star, with strong mass loss to have provided extra circumstellar extinction. We first review the Korean records and show that a spatial coincidence between the guest star and Cas A cannot be ruled out, as opposed to previous studies. Based on modern astrophysical findings on core-collapse SN, we argue that Cas A could have had an impostor and derive its anticipated properties. It turned out that the Cas A SN impostor must have been bright ($M_V=-14.7{\pm}2.2mag$) and an amount of dust with visual extinction of ${\geq}2.8{\pm}2.2mag$ should have formed in the ejected envelope and/or in a strong wind afterwards. The mass loss needs to have been spherically asymmetric in order to see the light echo from the SN event but not the one from the impostor event.

EVIDENCE FOR THE SOLAR CYCLE IN THE SUNSPOT AND AURORA RECORDS OF GORYER DYNASTY (고려시대의 흑점과 오로라 기록에 보이는 태양활동주기)

  • YANG HONG JIN;PARK CHANGBOM;PARK MYUNG GOO
    • Publications of The Korean Astronomical Society
    • /
    • v.13 no.1 s.14
    • /
    • pp.181-208
    • /
    • 1998
  • We have analyzed the sunspot and aurora data recorded in Go-Ryer-Sa. We have collected 35 records of sunspot observations for 46 days, and 232 records of auroral observations. To objectively estimate the periods of the solar activity appearing in these records a method of calculating the one-dimensional power spectrum from inhomogeneous data is developed, and applied to the sunspot and auroral data. We have found statistically significant 10.5 and 10 year periodicities in the distributions of sunspot and aurora records, respectively. These periods are consistent with the well-known solar activity cycle. There are indications of the long-term variations, but the period is not certain. We have also calculated the cross-correlations between the sunspot and auroral data. In particular, we have divided the aurora data into several subgroups to study their nature. We conclude that the historical records of strong auroral activity correspond to non-recurrent magnetic storms related to the sunspots. On the other hand, the records of weak auroral activity are thought to be related with the recurrent magnetic storms which occur frequently due to the coronal hole near the sunspot minimum.

  • PDF

A DEVELOPMENT HISTORY AND STRUCTURAL FEATURE OF SOGYUPYO IN THE JOSEON DYNASTY (조선시대 소규표(小圭表)의 개발 역사와 구조적 특징)

  • Mihn, B.H.;Kim, S.H.;Lee, K.W.;Ahn, Y.S.;Lee, Y.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.3
    • /
    • pp.129-140
    • /
    • 2011
  • In this paper, we have studied Sogyupyo (小圭表, small noon gnomon) of the Joseon dynasty. According to the Veritable Records of King Sejong (世宗, 1418 - 1450), Daegyupyo (大圭表, large noon gnomon) with a height of 40-feet [尺] was constructed by Jeong, Cho (鄭招) and his colleagues in 1435, and installed around Ganuidae (簡儀臺, platform of Ganui). On the contrary, the details of Sogyupyo are unknown although the shadow length measurements by Daegyupyo and Sogyupyo are found on the Veritable Records of King Myeongjong (明宗, 1545 - 1567). By analysing historical documents and performing experiments, we have investigated the construction details of Sogyupyo including its development year, manufacturer, and installation spot. We have found that Sogyupyo would be manufactured by King Sejong in 1440 and placed around Ganuidae. And Sogyupyo would be five times smaller than Daegyupyo, i.e., 8-feet. On the basis of experiments, we suggest that although it is smaller, Sogyupyo was equipped with a bar [橫梁] and a pin-hole projector [影符] like Daegyupyo in order to produce the observation precision presented in the Veritable Record of King Myeongjong.

Origin of the Korean Screen Planisphere with both Old and New Star-charts

  • Ahn, Sang-Hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.85.2-85.2
    • /
    • 2014
  • The origin of the Korean Screen Planisphere with both Traditional and New Star-Charts, made by Korean Astronomers in the Royal Astronomical Bureau of the Joseon Dynasty by adopting the knowledge of the European astronomy, is investigated by analyzing its inscriptions and star charts. The considerations on both the changes in notations or representations of names of asterisms and the naming taboos used in the Old-style planisphere imply that the star-chart is originated from either the Sukjong-Stele-Replica of Cheonsang-Yeolcha-Punyajido(天象列次分野之圖). The New style planisphere is just the reproduction of Huangdao-congxingtu (黃道總星圖), with the exception of the non-Chinese-traditional stars. The Huangdao-congxingtu was made in 1723 CE by Ignatius K$\ddot{o}$gler who was a Jesuit missionary and worked for the Bureau of Astronomy (欽天監) in the Qing Dyansty. I find that the star chart was imported in 1742 CE from the Qing by An Gukrin (安國麟) who was an astronomer in the Royal Astronomical Bureau of Joseon. The chart became model for the screen star-chart made in 1743 CE and now housed in Bopju temple. I found that the inscriptions are extracted from the sentences in both Xinzhi Lingtai Yixiangzhi (新製靈臺儀象志) and Qinding Yixiangkaocheng (欽定儀象考成). Korean historical records in either Daily Records of the Royal Secretariat of the Joseon Dynasty (承政院日記) or Annals of the Joseonn Dynasty (朝鮮王朝實錄) show that Xinzhi Lingtai-Yixiangzhi was imported from the Qing Dynasty in 1708 CE, and the Qinding Yixiangkaocheng was imported in 1766 CE. Thus, the Korean Screen Planisphere with both Old and New Star-charts was certainly made after 1766 CE.

  • PDF

Dating the Stars in the Calendrical Method Shoushili of the Yuan Dynasty

  • Sang-Hyeon Ahn
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.137-147
    • /
    • 2023
  • Shoushili was the official calendrical method promulgated in 1280 CE by the Yuan dynasty. It contains a list of the angular spans in right ascensions for the 28 lunar lodges. They are known to have been measured by Guo Shoujing with his advanced instruments with an unprecedented precision or reading error of 5'. Such precise data are useful to determine their observational epoch with an error range which is narrow enough to pinpoint on which historical occasion they were observed. Using the precise SIMBAD data based on eDR3 of GAIA and carefully identified determinative stars and considering the precession of equinoxes and proper motions, we apply linear regression methods to those data and obtain the observational epoch of 1271 ± 16 CE and the measurement error of 4.1'. We also have polar distances corresponding to declinations written in another manuscript of the Ming dynasty. Since the two data sets have similar significant digits, they were suggested to have the same origin. However, we obtain their observational epoch of 1364±5 CE and the measurement error of 5.7'. They must have been measured with different instruments and on a different occasion from the observations related to Shoushili. We review the history of the calendrical reform during the 13th century in the Yuan dynasty. We conclude that the observational epoch obtained from lodge spans in Shoushili agrees with the period of observations led by Guo Shoujing or 1276-1279 CE, which is also supported by the fact that the ecliptic lodge span values listed in Shoushili were calculated from the equatorial lodge spans.

Astronomical Characteristics of Cheonsang-yeolcha-bunyajido from the Perspective of Manufacturing Methods

  • Ahn, Sang-Hyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.51-62
    • /
    • 2015
  • I investigated a method for drawing the star chart in the planisphere Cheonsang-yeolcha-bunyajido. The outline of the star chart can be constructed by considering the astronomical information given in the planisphere alone and the drawing method described in Xin-Tangshu; further the chart can be completed by using additional information on the shape and linking method of asterisms out of an inherited star chart. The circles of perpetual visibility, the equator, and the circle of perpetual invisibility are concentric, and their common center locates the Tianshu-xing, which was defined to be a pole star in the Han dynasty. The radius of the circle of perpetual visibility was modified in accordance with the latitude of Seoul, whereas the other circles were drawn for the latitude of $35^{\circ}$, which had been the reference latitude in ancient Chinese astronomy. The ecliptic was drawn as an exact circle by parallel transference of the equator circle to fix the location of the equinoxes at the positions recorded in the epitaph of the planisphere. The positions of equinoxes originated from the Han dynasty. The 365 ticks around the boundary of the circle of perpetual invisibility were possibly drawn by segmenting the circumference with an arc length instead of a chord length with the ratio of the circumference of a circle to its diameter as accurate as 3.14 presumed. The 12 equatorial sectors were drawn on the boundary of the star-chart in accordance with the beginning and ending lodge angles given in the epitaph that originated from the Han dynasty. The determinative lines for the 28 lunar lodges were drawn to intersect their determinative stars, but seven determinative stars are deviated. According to the treatises of the Tang dynasty, these anomalies were inherited from charts of the period earlier than the Tang dynasty. Thus, the star chart in Cheonsang-yeolcha-bunyajido preserves the old tradition that had existed before the present Chinese tradition reformed in approximately 700 CE. In conclusion, the star chart in Cheonsang-yeolcha-bunyajido shows the sky of the former Han dynasty with the equator modified to the latitude of Seoul.

STATISTICAL ANALYSIS FOR ASTRONOMICAL RECORDS OF THE HYEONJONG-DONGGUNG-ILGI (1649-1659) (현종동궁일기(1649-1659)의 천문기록 통계분석)

  • UHN MEE, BAHK;BYEONG-HEE, MIHN;KI-WON, LEE;SANG HYUK, KIM;JAE YEON, HYUN;YONG GI, KIM
    • Publications of The Korean Astronomical Society
    • /
    • v.37 no.3
    • /
    • pp.59-79
    • /
    • 2022
  • We investigated the records of astronomical phenomena in the Hyeonjong-Donggung-Ilgi written by the educational office for a crown prince, Sigang-won, during the time of a crown prince of the king Hyeonjong (i.e., from 1649 to 1659). Of the total of 3,625 days, 3,044 astronomical accounts were compiled from astronomical records of 2,003 days. We classified these astronomical accounts into 16 items, grouped into five categories, and statistically analyzed each group. In our analysis, the accounts for atmos-pheric optical phenomena equates to 57.9% of the total, and for celestial phenomena visible during the daytime the percentage is 17.3%. The records related to the approach between two objects such as planets, moon, and stars account for 3.3%, and solar or lunar eclipses take up 0.6%. The ratio of accounts regarding meteor, comet, and fire light (火光) stand at 13.8%, 0.30%, and 6.8%, respectively. Sunny days account for 71.1% of all days per year during this period. We determined that the distribution of the fire light by month is similar to that of the solar halo. We also found that the astronomical records from the Annals of the Joseon Dynasty correspond to only 30% of those of the Hyeonjong-Donggung-Ilgi for the same period. In particular, the phenomena of celestial objects occurring outside the atmosphere are transmitted to the Annals of the Joseon Dynasty in a higher proportion than the phenomena inside the air. It is therefore necessary to use a historical diary like a Donggung-Ilgi to interpret the phenomena in the air such as atmospheric optical events, meteor, and fire light.

Analysis of Solar and Lunar Motions in the Seonmyeong Calendar

  • Lee, Ki-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.87-96
    • /
    • 2019
  • We investigate solar and lunar motions in the Seonmyeong (SM) calendar that was compiled by Xu, Ang of the Tang dynasty (A.D. 618-907) in China and used for 71 years from 822 to 892. This calendar was also used in Korea during the Goryeo dynasty (A.D. 918-1392) and in Japan for 823 years from 862 to 1684, the longest time among the three countries. Referring to historical documents of China, Korea, and Japan, we analyze the calendrical methods of calculating the daily apparent movements of the Sun and Moon in the SM calendar, which were considered their unequal motions, and compare the movements with the results of modern calculations for three periods in the Goryeo dynasty: 919, 1155, and 1392 years (i.e., the beginning, middle, and ending of the dynasty, respectively). We find that a quadratic equation was employed to obtain the daily movement of the Sun using physical quantities on the instant of each solar term, which was tabulated in its calendar book such as the Goryeosa (History of the Goryeo Dynasty). For quantitative analysis, we compute the mean absolute difference (MAD) of the daily apparent movement between the SM calendar and modern calculations and obtain 0.33, 0.30, and 0.31 arcmin for the periods of 919, 1155, and 1392 years, respectively. Meanwhile, we find relatively large MAD values in the daily movement of the Moon: 0.217, 0.284, and 0.240 degrees for each corresponding year. An interesting point is that the MAD value in the lunar motion shows the maximum in 1155 years, and is the minimum in the solar motion. In conclusion, we believe that this study will facilitate in the understanding of the SM calendar further, particularly in the calendrical methods of calculating sunrise, sunset, and eclipse times.