• Title/Summary/Keyword: histone-like protein

Search Result 36, Processing Time 0.023 seconds

Effect of Retinoic Acid and dibutyryl cyclic AMP on G1 Phase Associated Molecules during F9 Embryonic Carcinoma Cell Differentiation (Retinoic acid와 dibutyryl cyclic AMP가 F9 embryonic carcinoma cell 분화 중 G1 Phase 관련 분자에 미치는 영향)

  • 박귀례;김건홍;한순영;이유미;장성재
    • YAKHAK HOEJI
    • /
    • v.43 no.3
    • /
    • pp.378-384
    • /
    • 1999
  • Retinoic acid (RA) and dibutyryl cyclic AMP (dbcAMP) induce the differentiation of the multipotent embryonic carcinoma cell line, F9 cells, into parietal endoderm like cell. The F9 cells are highly proliferative doubling approximately 12 hourse. S Phase is predominant, lasting 10 hours and G2/M phase occupies most of the remaining cycle (2 hours) and G1 phase is nearly non-existent. In this study, we showed the effect of RA and dbcAMPon the cell cycle associated molecules (especially around G1 phase) during F9 cell differentiation. Differentiation of F9 cells was induced by the combined addition of RA ($10^{-7}M$) and dbcAMP (0.5mM), and cells were harvested daily up to 4 days. Flow cytometric analysis showed the prolongation of G1 phase around 30 hours after induction. Western blot analysis revealed that the amount of cyclin D1 and cdk2 were increased at day 4. However, histone H1 kinase activity of cdk2 was decreased. These data strongly suggest that RA and dbcAMP induce the growth arrest of F9 cells at G1 phase by decreasing the activity of cdk2, although they have increased the protein contents of cyclin D1 and cdk2. The reason for the discrepancy between the H1 kinase activity and protein contents are not clear yet.

  • PDF

Anti-invasive activity of histone deacetylase inhibitors via the induction of Egr-1 and the modulation of tight junction-related proteins in human hepatocarcinoma cells

  • Kim, Sung-Ok;Choi, Byung-Tae;Choi, Il-Whan;Cheong, Jae-Hun;Kim, Gi-Young;Kwon, Taeg-Kyu;Kim, Nam-Deuk;Choi, Yung-Hyun
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.655-660
    • /
    • 2009
  • The potential anti-metastasis and anti-invasion activities of early growth response gene-1 (Egr-1) and claudin-3, a tight junction (TJ)-related protein, were evaluated using histone deacetylase (HDAC) inhibitors in human hepatocarcinoma cells. The results of wound healing and Transwell assays showed that HDAC inhibitors such as trichostatin A and sodium butyrate inhibited cell migration and invasion. HDAC inhibitors markedly induced Egr-1 expression during the early period, after which expression levels decreased. In addition, the down-regulation of snail and type 1 insulin-like growth factor receptor (IGF-1R) in HDAC inhibitor- treated cells induced the upregulation of thrombospondin-1 (TSP-1), E-cadherin and claudin-3. Cells transfected with Egr-1 and claudin-3 siRNA displayed significant blockage of HDAC inhibitor-induced anti-invasive activity. Collectively, these findings indicate that the up-regulation of Egr-1 and claudin-3 are crucial steps in HDAC inhibitor-induced anti-metastasis and anti-invasion.

Effects of Atomoxetine on Hyper-Locomotive Activity of the Prenatally Valproate-Exposed Rat Offspring

  • Choi, Chang Soon;Hong, Minha;Kim, Ki Chan;Kim, Ji-Woon;Yang, Sung Min;Seung, Hana;Ko, Mee Jung;Choi, Dong-Hee;You, Jueng Soo;Shin, Chan Young;Bahn, Geon Ho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.406-413
    • /
    • 2014
  • to valproic acid (VPA) during pregnancy produces ASD-like core behavioral phenotypes as well as hyperactivity in offspring both in human and experimental animals, which makes it a plausible model to study ASD-related neurobiological processes. In this study, we examined the effects of two of currently available attention defecit hyperactivity disorder (ADHD) medications, methylphenidate (MPH) and atomoxetine (ATX) targeting dopamine and norepinephrine transporters (DAT and NET), respectively, on hyperactive behavior of prenatally VPA-exposed rat offspring. In the prefrontal cortex of VPA exposed rat offspring, both mRNA and protein expression of DAT was increased as compared with control. VPA function as a histone deacetylase inhibitor (HDACi) and chromatin immunoprecipitation experiments demonstrated that the acetylation of histone bound to DAT gene promoter was increased in VPA-exposed rat offspring suggesting epigenetic mechanism of DAT regulation. Similarly, the expression of NET was increased, possibly via increased histone acetylation in prefrontal cortex of VPA-exposed rat offspring. When we treated the VPA-exposed rat offspring with ATX, a NET selective inhibitor, hyperactivity was reversed to control level. In contrast, MPH that inhibits both DAT and NET, did not produce inhibitory effects against hyperactivity. The results suggest that NET abnormalities may underlie the hyperactive phenotype in VPA animal model of ASD. Profiling the pharmacological responsiveness as well as investigating underlying mechanism in multiple models of ASD and ADHD may provide more insights into the neurobiological correlates regulating the behavioral abnormalities.

Allergy Immunity Regulation and Synergism of Bifidobacteria (Bifidobacteria의 allergy 면역 조절과 synergism)

  • Cho, Kwang Keun;Choi, In Soon
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.482-499
    • /
    • 2017
  • Allergic diseases have increased over the past several decade worldwide including developing countries. Allergic inflammatory responses are caused by Th (T helper)2 immune responses, triggered by allergen ingestion by antigen presenting cells such as dendritic cells (DCs). Intestinal microorganisms control the metabolism and physiological functions of the host, contribute to early immune system maturation during the early life, and homeostasis and epithelial integrity during life. Bifidobacteria have strain-specific immunostimulatory properties in the Th1/Th2 balance, inhibit TSLP (thymic stromal lymphopoietin) and IgE expression, and promote Flg (Filaggrin) and FoxP3 (Treg) expression to alleviate allergies. In addition, unmethylated CpG motif ODN (oligodeoxynucleotides) is recognized by TLR (toll-like receptors)9 of B cells and plasmacytoid dendritic cells (pDCs) to induce innate and adaptive immune responses, while the butyrate produced by Clostridium butyricum activates the GPR (G-protein coupled receptors)109a signaling pathway to induce the expression of anti-inflammatory gene of pDCs, and directly stimulates the proliferation of thymically derived regulatory T (tTreg) cells through the activation of GPR43 or inhibits the activity of HADC (histone deacetylase) to differentiate naive $CD4^+$ T cells into pTreg cells through the histone H3 acetylation of Foxp3 gene intronic enhancer.

Methylated-UHRF1 and PARP1 interaction is critical for homologous recombination

  • Hahm, Ja Young;Kang, Joo-Young;Park, Jin Woo;Jung, Hyeonsoo;Seo, Sang-Beom
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.112-117
    • /
    • 2020
  • A recent study suggested that methylation of ubiquitin-like with PHD and RING finger domain 1 (UHRF1) is regulated by SET7 and lysine-specific histone demethylase 1A (LSD1) and is essential for homologous recombination (HR). The study demonstrated that SET7-mediated methylation of UHRF1 promotes polyubiquitination of proliferating cell nuclear antigen (PCNA), inducing HR. However, studies on mediators that interact with and recruit UHRF1 to damaged lesions are needed to elucidate the mechanism of UHRF1 methylation-induced HR. Here, we identified that poly [ADP-ribose] polymerase 1 (PARP1) interacts with damage-induced methylated UHRF1 specifically and mediates UHRF1 to induce HR progression. Furthermore, cooperation of UHRF1-PARP1 is essential for cell viability, suggesting the importance of the interaction of UHRF1-PARP1 for damage tolerance in response to damage. Our data revealed that PARP1 mediates the HR mechanism, which is regulated by UHRF1 methylation. The data also indicated the significant role of PARP1 as a mediator of UHRF1 methylation-correlated HR pathway.

H-NS Silences Gene Expression of LeuO, the Master Regulator of the Cyclic(Phe-Pro)-dependent Signal Pathway, in Vibrio vulnificus

  • Park, Na-Young;Lee, Keun-Woo;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.830-838
    • /
    • 2020
  • The histone-like nucleoid structuring protein (H-NS) is an abundant global regulator of environmentally controlled gene expression. Herein, we demonstrate that H-NS represses the expression of LeuO, the master regulator of the cyclic(Phe-Pro)-dependent signaling pathway, by directly binding to the upstream region of the gene. H-NS binds to a long stretched region (more than 160-bp long), which overlaps with binding sites for ToxR and LeuO. A high quantity of H-NS outcompetes ToxR for binding to the cis-acting element of leuO. However, our footprinting analyses suggests that the binding of H-NS is relatively weaker than LeuO or ToxR at the same molarity. Considering that the DNA nucleotide sequences of the upstream regions of leuO genes are highly conserved among various Vibrio, such patterns as those found in V. vulnificus would be a common feature in the regulation of leuO gene expression in Vibrionaceae. Taken together, these results suggest that, in species belonging to Vibrionaceae, H-NS regulates the expression of leuO as a basal stopper when cFP-ToxR mediated signaling is absent.

Regulatory Mechanism of Insulin-Like Growth Factor Binding Protein-3 in Non-Small Cell Lung Cancer (비소세포성 폐암에서 인슐린 양 성장 인자 결합 단백질-3의 발현 조절 기전)

  • Chang, Yoon Soo;Lee, Ho-Young;Kim, Young Sam;Kim, Hyung Jung;Chang, Joon;Ahn, Chul Min;Kim, Sung Kyu;Kim, Se Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.465-484
    • /
    • 2004
  • Background : Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) inhibits the proliferation of non-small cell lung cancer (NSCLC) cells by inducing apoptosis. Methods : In this study, we investigated whether hypermethylation of IGFBP-3 promoter play an important role in the loss of IGFBP-3 expression in NSCLC. We also studied the mechanisms that mediate the silencing of IGFBP-3 expression in the cell lines which have hypermethylated IGFBP-3 promoter. Results : The IGFBP-3 promoter has hypermethylation in 7 of 15 (46.7%) NSCLC cell lines and 16 (69.7%) of 23, 7 (77.8%) of 9, 4 (80%) of 5, 4 (66.7 %) of 6, and 6 (100%) of 6 tumor specimens from patients with stage I, II, IIIA, IIIB, and IV NSCLC, respectively. The methylation status correlated with the level of protein and mRNA in NSCLC cell lines. Expression of IGFBP-3 was restored by the demethylating agent 5'-aza-2'-deoxycytidine (5'-aza-dC) in a subset of NSCLC cell lines. The Sp-1/ Sp-3 binding element in the IGFBP-3 promoter, important for promoter activity, was methylated in the NSCLC cell lines which have reduced IGFBP-3 expression and the methylation of this element suppressed the binding of the Sp-1 transcription factor. A ChIP assay showed that the methylation status of the IGFBP-3 promoter influenced the binding of Sp-1, methyl-CpG binding protein-2 (MeCP2), and histone deacetylase (HDAC) to Sp-1/Sp-3 binding element, which were reversed by by 5'-aza-dC. In vitro methylation of the IGFBP-3 promoter containing the Sp-1/Sp-3 binding element significantly reduced promoter activity, which was further suppressed by the overexpression of MeCP2. This reduction in activity was rescued by 5'-aza-dC. Conclusion : These findings indicate that hypermethylation of the IGFBP-3 promoter is one mechanism by which IGFBP-3 expression is silenced and MeCP2, with recruitment of HDAC, may play a role in silencing of IGFBP-3 expression. The frequency of this abnormality is also associated with advanced stages among the patients with NSCLC, suggesting that IGFBP-3 plays an important role in lung carcinogenesis/progression and that the promoter methylation status of IGFBP-3 may be a marker for early molecular detection and/or for monitoring chemoprevention efforts.

Effects of 5-azacytidine, a DNA methylation inhibitor, on embryogenic callus formation and shoot regeneration from rice mature seeds (벼 성숙종자로부터 배상체 캘러스 형성 및 식물체 재분화에 DNA methylation 억제제인 5-azacytidine의 영향)

  • Lee, Yeon-Hee;Lee, Jung-Sook;Kim, Soo-Yun;Sohn, Seong-Han;Kim, Dool-Yi;Yoon, In-Sun;Kweon, Soon-Jong;Suh, Seok-Chul
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • The modification of DNA and histone plays an important role for gene expression in plant development. The objective of this research is to observe the effects of methylation on the gene expression during dedifferentiation from rice mature seeds to callus and differentiation from callus to shoots. The embryogenic callus with ability to shoot regeneration was not induced on the N6A medium supplemented with 5-azacytidine and abnormal callus with brown color was formed. When the normal rice callus was placed on the regeneration MSRA medium supplemented with 5-azacytidine, the shoot regeneration was inhibited. The results showed that 5-azacytidine, DNA demethylating agent, had negative effects on normal embryogenic callus formation and shoot regeneration. This suggested that DNA methylation of some genes was required for normal cell dedifferentiation and differentiation in tissue culture. The microarray and $GeneFishig^{TM}$ DEG screening were used to observe the gene transcript profile in callus induction and regeneration on N6A (N6 medium + 5-azaC) and MSRA (MS regeneration medium + 5-azaC). Subsets of genes were up-regulated or down-regulated in response to 5-azaC treatments. The genes related with epigenetic regulation, electron transport, nucleic acid metabolism and response to stress were up and down regulated. The different expression of some genes (germin like protein etc.) during callus induction and shoot regeneration was confirmed using RT-PCR and northern blot analysis.

Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets

  • Reddy, Kondreddy Eswar;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Wook;Jung, Hyun Jung;Choe, Changyong;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.595-606
    • /
    • 2018
  • Objective: The Fusarium mycotoxins of deoxynivalenol (DON) and zerolenone (ZEN) cause health hazards for both humans and farm animals. Therefore, the main intention of this study was to reveal DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the liver of piglets. Methods: In the present study, 15 six-week-old piglets were randomly assigned to the following three different dietary treatments for 4 weeks: control diet, diet containing 8 mg DON/kg feed, and diet containing 0.8 mg ZEN/kg feed. After 4 weeks, liver samples were collected and sequenced using RNA-Seq to investigate the effects of the mycotoxins on genes and gene networks associated with the immune systems of the piglets. Results: Our analysis identified a total of 249 differentially expressed genes (DEGs), which included 99 upregulated and 150 downregulated genes in both the DON and ZEN dietary treatment groups. After biological pathway analysis, the DEGs were determined to be significantly enriched in gene ontology terms associated with many biological pathways, including immune response and cellular and metabolic processes. Consistent with inflammatory stimulation due to the mycotoxin-contaminated diet, the following Kyoto encyclopedia of genes and genomes pathways, which were related to disease and immune responses, were found to be enriched in the DEGs: allograft rejection pathway, cell adhesion molecules, graft-versus-host disease, autoimmune thyroid disease (AITD), type I diabetes mellitus, human T-cell leukemia lymphoma virus infection, and viral carcinogenesis. Genome-wide expression analysis revealed that DON and ZEN treatments downregulated the expression of the majority of the DEGs that were associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9), proliferation (insulin-like growth factor 1, major facilitator superfamily domain containing 2A, insulin-like growth factor binding protein 2, lipase G, and salt inducible kinase 1), and other immune response networks (paired immunoglobulin-like type 2 receptor beta, Src-like-adaptor-1 [SLA1], SLA3, SLA5, SLA7, claudin 4, nicotinamide N-methyltransferase, thyrotropin-releasing hormone degrading enzyme, ubiquitin D, histone $H_2B$ type 1, and serum amyloid A). Conclusion: In summary, our results demonstrated that high concentrations DON and ZEN disrupt immune-related processes in the liver.

Neuroprotection by Valproic Acid in Mouse Models of Permanent and Transient Focal Cerebral Ischemia

  • Qian, Yong Ri;Lee, Mu-Jin;Hwang, Shi-Nae;Kook, Ji-Hyun;Kim, Jong-Keun;Bae, Choon-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.435-440
    • /
    • 2010
  • Valproic acid (VPA) is a well-known anti-epileptic and mood stabilizing drug. A growing number of reports demonstrate that VPA is neuroprotective against various insults. Despite intensive efforts to develop new therapeutics for stroke over the past two decades, all treatments have thus far failed to show clinical effect because of treatment-limiting side effects of the drugs. Therefore, a safety-validated drug like VPA would be an attractive candidate if it has neuroprotective effects against ischemic insults. The present study was undertaken to examine whether pre- and post-insult treatments with VPA protect against brain infarct and neurological deficits in mouse transient (tMCAO) and permanent middle cerebral artery occlusion (pMCAO) models. In the tMCAO (2 hr MCAO and 22 hr reperfusion) model, intraperitoneal injection of VPA (300 mg/kg, Lp.) 30 min prior to MCAO significantly reduced the infarct size and the neurological deficit. VPA treatment immediately after reperfusion significantly reduced the infarct size. The administration of VPA at 4 hr after reperfusion failed to reduce the infarct size and the neurological deficit. In the pM CAO model, treatment with VPA (300 mg/kg, i.p.) 30 min prior to MCAO significantly attenuated the infarct size, but did not affect the neurological deficit. Western blot analysis of acetylated H3 and H4 protein levels in extracts from the ischemic cortical area showed that treatment with VPA increased the expression of acetylated H3 and H4 at 2 hrs after MCAO. These results demonstrated that treatment with VPA prior to ischemia attenuated ischemic brain damage in both mice tMCAO and pMCAO models and treatment with VPA immediately after reperfusion reduced the infarct area in the tMCAO model. VPA could therefore be evaluated for clinical use in stroke patients.