• Title/Summary/Keyword: histone deacetylase inhibitors

Search Result 70, Processing Time 0.024 seconds

Genetic Function Approximation and Bayesian Models for the Discovery of Future HDAC8 Inhibitors

  • Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.3 no.4
    • /
    • pp.15.1-15.11
    • /
    • 2011
  • Background: Histone deacetylase (HDAC) 8 is one of its family members catalyzes the removal of acetyl groups from N-terminal lysine residues of histone proteins thereby restricts transcription factors from being expressed. Inhibition of HDAC8 has become an emerging and effective anti-cancer therapy for various cancers. Application computational methodologies may result in identifying the key components that can be used in developing future potent HDAC8 inhibitors. Results: Facilitating the discovery of novel and potential chemical scaffolds as starting points in the future HDAC8 inhibitor design, quantitative structure-activity relationship models were generated with 30 training set compounds using genetic function approximation (GFA) and Bayesian algorithms. Six GFA models were selected based on the significant statistical parameters calculated during model development. A Bayesian model using fingerprints was developed with a receiver operating characteristic curve cross-validation value of 0.902. An external test set of 54 diverse compounds was used in validating the models. Conclusions: Finally two out of six models based on their predictive ability over the test set compounds were selected as final GFA models. The Bayesian model has displayed a high classifying ability with the same test set compounds and the positively and negatively contributing molecular fingerprints were also unveiled by the model. The effectively contributing physicochemical properties and molecular fingerprints from a set of known HDAC8 inhibitors were identified and can be used in designing future HDAC8 inhibitors.

Classification of HDAC8 Inhibitors and Non-Inhibitors Using Support Vector Machines

  • Cao, Guang Ping;Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.4 no.1
    • /
    • pp.2.1-2.7
    • /
    • 2012
  • Introduction: Histone deacetylases (HDAC) are a class of enzymes that remove acetyl groups from ${\varepsilon}$-N-acetyl lysine amino acids of histone proteins. Their action is opposite to that of histone acetyltransferase that adds acetyl groups to these lysines. Only few HDAC inhibitors are approved and used as anti-cancer therapeutics. Thus, discovery of new and potential HDAC inhibitors are necessary in the effective treatment of cancer. Materials and Methods: This study proposed a method using support vector machine (SVM) to classify HDAC8 inhibitors and non-inhibitors in early-phase virtual compound filtering and screening. The 100 experimentally known HDAC8 inhibitors including 52 inhibitors and 48 non-inhibitors were used in this study. A set of molecular descriptors was calculated for all compounds in the dataset using ADRIANA. Code of Molecular Networks. Different kernel functions available from SVM Tools of free support vector machine software and training and test sets of varying size were used in model generation and validation. Results and Conclusion: The best model obtained using kernel functions has shown 75% of accuracy on test set prediction. The other models have also displayed good prediction over the test set compounds. The results of this study can be used as simple and effective filters in the drug discovery process.

Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy

  • Eom, Gwang Hyeon;Kook, Hyun
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.131-138
    • /
    • 2015
  • Cardiac hypertrophy is a form of global remodeling, although the initial step seems to be an adaptation to increased hemodynamic demands. The characteristics of cardiac hypertrophy include the functional reactivation of the arrested fetal gene program, where histone deacetylases (HDACs) are closely linked in the development of the process. To date, mammalian HDACs are divided into four classes: I, II, III, and IV. By structural similarities, class II HDACs are then subdivided into IIa and IIb. Among class I and II HDACs, HDAC2, 4, 5, and 9 have been reported to be involved in hypertrophic responses; HDAC4, 5, and 9 are negative regulators, whereas HDAC2 is a pro-hypertrophic mediator. The molecular function and regulation of class IIa HDACs depend largely on the phosphorylation-mediated cytosolic redistribution, whereas those of HDAC2 take place primarily in the nucleus. In response to stresses, posttranslational modification (PTM) processes, dynamic modifications after the translation of proteins, are involved in the regulation of the activities of those hypertrophy-related HDACs. In this article, we briefly review 1) the activation of HDAC2 in the development of cardiac hypertrophy and 2) the PTM of HDAC2 and its implications in the regulation of HDAC2 activity.

Estrogen Receptor Enhances the Antiproliferative Effects of Trichostatin A and HC-toxin in Human Breast Cancer Cells

  • Min, Kyung-Nan;Cho, Min-Jung;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.554-561
    • /
    • 2004
  • Trichostatin A, an antifungal antibiotics, and HC-toxin are potent and specific inhibitors of histone deacetylase activity. Histone deacetylase inhibitors are new class of chemotherapeutic drugs able to induce tumor cell apoptosis and/or cell cycle arrest. In this study, the antiproliferative activities of trichostatin A and HC-toxin were compared between estrogen receptor positive human breast cancer cell MCF-7 and estrogen receptor negative human breast cancer cell MDA-MB-468. Trichostatin A and HC-toxin showed potent antiproliferative activity in both MCF-7 and MDA-MB-468 cells. In MCF-7 cells that contain high level estrogen receptor, trichostatin A and HC-toxin brought about three-times more potent cell growth inhibitory effect than estrogen receptor negative MDA-MB-468 cells. Both trichostatin A and HC-toxin showed cell cycle arrest at G$_2$/M phases of MCF-7 and MDA-MB-468 cells in a dose- and time- depen- dent manner. Trichostatin A and HC-toxin also induced apoptosis from MCF-7 and MDA-MB-468 cells in a dose- and time-dependent manner. Results of this study suggested that antipro-liferative effects of trichostatin A and HC-toxin might be involved in estrogen receptor signaling pathway, but cell cycle arrest and apoptosis of trichostatin A and HC-toxin might not be involved in estrogen receptor system of human breast cancer cells.

Comparison of Expression Signature of Histone Deacetylases (HDACs) in Mesenchymal Stem Cells from Multiple Myeloma and Normal Donors

  • Ahmadvand, Mohammad;Noruzinia, Mehrdad;Soleimani, Masoud;Abroun, Saeid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3605-3610
    • /
    • 2016
  • Background: Histone acetylation in chromatin structures plays a key role in regulation of gene transcription and is strictly controlled by histone acetyltransferase (HAT) and deacetylase (HDAC) activities. HDAC deregulation has been reported in several cancers. Materials and Methods: The expression of 10 HDACs (including HDAC class I and II) was studied by quantitative reverse transcription-PCR (qRT-PCR) in a cohort of mesenchymal stem cells (MM-MSCs) from 10 multiple myeloma patients with a median age 60y. The results were compared with those obtained for normal donors. Then, a coculture system was performed between MM-MSCs and u266 cell line, in the presence or absence of sodium butyrate (NaBT), to understand the effects of HDAC inhibitors (HDACi) in MM-MSCs on multiple myeloma cases. Also, the interleukin-6 (IL-6) and vascular endothelial growth factor (VEGFA) gene expression level and apoptotic effects were investigated in MM-MSCs patients and control group following NaBT treatment. Results: The results indicated that upregulated (HDACs) and downregulated (IL6 and VEGFA) genes were differentially expressed in the MM-MSCs derived from patients with multiple myeloma and ND-MSCs from normal donors. Comparison of the MM-MSCs and ND-MSCs also showed distinct HDACs expression patterns. For the first time to our knowledge, a significant increase of apoptosis was observed in coculture with MM-MSCs treated with NaBT. Conclusions: The obtained findings elucidate a complex set of actions in MSCs in response to HDAC inhibitors, which may be responsible for anticancer effects. Also, the data support the idea that MSCs are new therapeutic targets as a potential effective strategy for MM.

Anti-invasive activity of histone deacetylase inhibitors via the induction of Egr-1 and the modulation of tight junction-related proteins in human hepatocarcinoma cells

  • Kim, Sung-Ok;Choi, Byung-Tae;Choi, Il-Whan;Cheong, Jae-Hun;Kim, Gi-Young;Kwon, Taeg-Kyu;Kim, Nam-Deuk;Choi, Yung-Hyun
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.655-660
    • /
    • 2009
  • The potential anti-metastasis and anti-invasion activities of early growth response gene-1 (Egr-1) and claudin-3, a tight junction (TJ)-related protein, were evaluated using histone deacetylase (HDAC) inhibitors in human hepatocarcinoma cells. The results of wound healing and Transwell assays showed that HDAC inhibitors such as trichostatin A and sodium butyrate inhibited cell migration and invasion. HDAC inhibitors markedly induced Egr-1 expression during the early period, after which expression levels decreased. In addition, the down-regulation of snail and type 1 insulin-like growth factor receptor (IGF-1R) in HDAC inhibitor- treated cells induced the upregulation of thrombospondin-1 (TSP-1), E-cadherin and claudin-3. Cells transfected with Egr-1 and claudin-3 siRNA displayed significant blockage of HDAC inhibitor-induced anti-invasive activity. Collectively, these findings indicate that the up-regulation of Egr-1 and claudin-3 are crucial steps in HDAC inhibitor-induced anti-metastasis and anti-invasion.

IL-4 and HDAC Inhibitors Suppress Cyclooxygenase-2 Expression in Human Follicular Dendritic Cells

  • Cho, Whajung;Hong, Seung Hee;Choe, Jongseon
    • IMMUNE NETWORK
    • /
    • v.13 no.2
    • /
    • pp.75-79
    • /
    • 2013
  • Evidence for immunoregulatory roles of prostaglandins (PGs) is accumulating. Since our observation of PG production by human follicular dendritic cells (FDCs), we investigated the regulatory mechanism of PG production in FDC and attempted to understand the functions of released PGs in the responses of adjacent lymphocytes. Here, using FDC-like cells, HK cells, we analyzed protein expression alterations in cyclooxygenase-2 (COX-2) in the presence of IL-4 or histone deacetylase (HDAC) inhibitors. Both IL-4 and HDAC inhibitors suppressed COX-2 expression in dose-dependent manners. Their effect was specific to COX-2 and did not reach to COX-1 expression. Interestingly, HDAC inhibitors gave rise to an opposing effect on COX-2 expression in peripheral blood monocytes. Our results suggest that IL-4 may regulate COX-2 expression in FDCs by affecting chromatin remodeling and provide insight into the role of cellular interactions between T cells and FDC during the GC reaction. Given the growing interests in wide-spectrum HDAC inhibitors, the differential results on COX-2 expression in HK cells and monocytes raise cautions on their clinical use.

Anti-Cancer Effect of 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide in MCF-7 Human Breast Cancer

  • Min, Kyung-Nan;Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.10.1-10.7
    • /
    • 2012
  • Objectives: In recent years, a number of structurally diverse Histone deacetylase (HDAC) inhibitors have been identified and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. This study aimed at investigating the antitumor activity of newly synthesized HDAC inhibitor, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide (IN-2001) using human breast cancer cells. Methods: We have synthesized a new HDAC inhibitor, IN-2001, and cell proliferation inhibition assay with this chemical in estrogen receptor-positive human breast cancer MCF-7 cells. Cell cycle analysis on MCF-7 cells treated with IN-2001 was carried out by flow cytometry and gene expression was measured by RT-PCR. Results: In MCF-7 cells IN-2001 showed remarkable anti-proliferative effects in a dose- and time-dependent manner. In MCF-7 cells, IN-2001 showed a more potent growth inhibitory effect than that of suberoylanilide hydroxamic acid. These growth inhibitory effects were related to the cell cycle arrest and induction of apoptosis. IN-2001 showed accumulation of cells at $G_2$/M phase and of the sub-$G_1$ population in a time-dependent manner, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with HDAC inhibitor-mediated induction of CDK inhibitor expression. In MCF-7 cells, IN-2001 significantly increased $p21^{WAF1}$ expression. Conclusions: In summary, cyclin-dependent kinase (CDK) induced growth inhibition, possibly through modulation of cell cycle and apoptosis regulatory proteins, such as CDK inhibitors, and cyclins. Taken together, these results provide an insight into the utility of HDAC inhibitors as a novel chemotherapeutic regime for hormone-sensitive and insensitive breast cancer.

Synthesis and Biological Evaluation of N-(Aminopyridine) Benzamide Analogues as Histone Deacetylase Inhibitors

  • Zhang, Qing-Wei;Li, Jian-Qi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.535-540
    • /
    • 2012
  • A series of benzamide-based histone deacetylases (HDACs) inhibitors possessing N-(aminopyridine) residue as the zinc binding site of HDAC were synthesized and evaluated. Among these derivatives, compounds with N-(2-amino-4-pyridine) benzamide moiety have been found as the most potent ones. Moreover, introduction of appropriate substituents on the terminal aryl group acting as the surface-recognition domain could significantly improve the antiproliferative activity. In particular, the compound 4k possessed favorable pharmacokinetic characteristics and exhibited potent antitumor activity on xenograft model in mice at well tolerated doses, thus suggesting a good therapeutic index.