• Title/Summary/Keyword: histogram-based segmentation

Search Result 122, Processing Time 0.03 seconds

Feature Extraction by Line-clustering Segmentation Method (선군집분할방법에 의한 특징 추출)

  • Hwang Jae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.401-408
    • /
    • 2006
  • In this paper, we propose a new class of segmentation technique for feature extraction based on the statistical and regional classification at each vertical or horizontal line of digital image data. Data is processed and clustered at each line, different from the point or space process. They are designed to segment gray-scale sectional images using a horizontal and vertical line process due to their statistical and property differences, and to extract the feature. The techniques presented here show efficient results in case of the gray level overlap and not having threshold image. Such images are also not easy to be segmented by the global or local threshold methods. Line pixels inform us the sectionable data, and can be set according to cluster quality due to the differences of histogram and statistical data. The total segmentation on line clusters can be obtained by adaptive extension onto the horizontal axis. Each processed region has its own pixel value, resulting in feature extraction. The advantage and effectiveness of the line-cluster approach are both shown theoretically and demonstrated through the region-segmental carotid artery medical image processing.

A shot change detection algorithm based on frame segmentation and object movement (프레임 블록화와 객체의 이동을 이용한 샷 전환 탐지 알고리즘)

  • Kim, Seung-Hyun;Hwang, Doosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • This paper proposes a shot change detection algorithm by using frame segmentation and the object changes among moving blocks. In order to detect the rapid moving changes of objects between two consecutive frames, the moving blocks on the diagonal are defined, and their histograms are calculated. When a block of the current frame is compared to the moving blocks of the next frame, the block histograms are used and the threshold of a shot change detection is automatically adjusted by Otsu's threshold method. The proposed algorithm was tested for the various types of color or gray videos such as films, dramas, animations, and video tapes in National Archives of Korea. The experimental results showed that the proposed algorithm could enhance the detection rate when compared to the studied methods that use brightness, histogram, or segmentation.

Image segmentation using fuzzy worm searching and adaptive MIN-MAX clustering based on genetic algorithm (유전 알고리즘에 기반한 퍼지 벌레 검색과 자율 적응 최소-최대 군집화를 이용한 영상 영역화)

  • Ha, Seong-Wook;Kang, Dae-Seong;Kim, Dai-Jin
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.109-120
    • /
    • 1998
  • An image segmentation approach based on the fuzzy worm searching and MIN-MAX clustering algorithm is proposed in this paper. This algorithm deals with fuzzy worm value and min-max node at a gross scene level, which investigates the edge information including fuzzy worm action and spatial relationship of the pixels as the parameters of its objective function. But the conventional segmentation methods for edge extraction generally need the mask information for the algebraic model, and take long run times at mask operation, whereas the proposed algorithm has single operation according to active searching of fuzzy worms. In addition, we also propose both genetic fuzzy worm searching and genetic min-max clustering using genetic algorithm to complete clustering and fuzzy searching on grey-histogram of image for the optimum solution, which can automatically determine the size of ranges and has both strong robust and speedy calculation. The simulation results showed that the proposed algorithm adaptively divided the quantized images in histogram region and performed single searching methods, significantly alleviating the increase of the computational load and the memory requirements.

  • PDF

Face Detection using Orientation(In-Plane Rotation) Invariant Facial Region Segmentation and Local Binary Patterns(LBP) (방향 회전에 불변한 얼굴 영역 분할과 LBP를 이용한 얼굴 검출)

  • Lee, Hee-Jae;Kim, Ha-Young;Lee, David;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.692-702
    • /
    • 2017
  • Face detection using the LBP based feature descriptor has issues in that it can not represent spatial information between facial shape and facial components such as eyes, nose and mouth. To address these issues, in previous research, a facial image was divided into a number of square sub-regions. However, since the sub-regions are divided into different numbers and sizes, the division criteria of the sub-region suitable for the database used in the experiment is ambiguous, the dimension of the LBP histogram increases in proportion to the number of sub-regions and as the number of sub-regions increases, the sensitivity to facial orientation rotation increases significantly. In this paper, we present a novel facial region segmentation method that can solve in-plane rotation issues associated with LBP based feature descriptors and the number of dimensions of feature descriptors. As a result, the proposed method showed detection accuracy of 99.0278% from a single facial image rotated in orientation.

Region Extraction & Disease Recognition in MRI (MRI 영상에서 영역추출과 질환인식)

  • Lee, Sang-Bock;Lee, Sam-Yol;Lee, Jun-Haeng
    • Journal of radiological science and technology
    • /
    • v.27 no.3
    • /
    • pp.19-24
    • /
    • 2004
  • MRI imaging is one of the imaging techniques showing anatomical structures of human body for medical diagnosis, and has been researched in order to provide better quality of anatomical information. In this study, we propose a very useful method to extract an interest areas and how to diagnose necrolysis of femoral neck disease automatically. Regions of femoral neck is set using anatomical features and Hough transform and advantages of both region extension and histogram-based region segmentation method are combined for better region segmentation. As a result of the proposed method, good imaging quality was obtained for femoral neck with both normal and severe necrosis as well as for femoral neck in early stage of necrolysis.

  • PDF

Effective Covariance Tracker based on Adaptive Foreground Segmentation in Tracking Window (적응적인 물체분리를 이용한 효과적인 공분산 추적기)

  • Lee, Jin-Wook;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.766-770
    • /
    • 2010
  • In this paper, we present an effective covariance tracking algorithm based on adaptive size changing of tracking window. Recent researches have advocated the use of a covariance matrix of object image features for tracking objects instead of the conventional histogram object models used in popular algorithms. But, according to the general covariance tracking algorithm, it can not deal with the scale changes of the moving objects. The scale of the moving object often changes in various tracking environment and the tracking window(or object kernel) has to be adapted accordingly. In addition, the covariance matrix of moving objects should be adaptively updated considering of the tracking window size. We provide a solution to this problem by segmenting the moving object from the background pixels of the tracking window. Therefore, we can improve the tracking performance of the covariance tracking method. Our several simulations prove the effectiveness of the proposed method.

A Study on Class Sample Extraction Technique Using Histogram Back-Projection for Object-Based Image Classification (객체 기반 영상 분류를 위한 히스토그램 역투영을 이용한 클래스 샘플 추출 기법에 관한 연구)

  • Chul-Soo Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.157-168
    • /
    • 2023
  • Image segmentation and supervised classification techniques are widely used to monitor the ground surface using high-resolution remote sensing images. In order to classify various objects, a process of defining a class corresponding to each object and selecting samples belonging to each class is required. Existing methods for extracting class samples should select a sufficient number of samples having similar intensity characteristics for each class. This process depends on the user's visual identification and takes a lot of time. Representative samples of the class extracted are likely to vary depending on the user, and as a result, the classification performance is greatly affected by the class sample extraction result. In this study, we propose an image classification technique that minimizes user intervention when extracting class samples by applying the histogram back-projection technique and has consistent intensity characteristics of samples belonging to classes. The proposed classification technique using histogram back-projection showed improved classification accuracy in both the experiment using hue subchannels of the hue saturation value transformed image from Compact Advanced Satellite 500-1 imagery and the experiment using the original image compared to the technique that did not use histogram back-projection.

Effective Road Area Extraction in Satellite Images Using Texture-Based BP Neural Network (텍스쳐 기반 BP 신경망을 이용한 위성영상의 도로영역 추출)

  • Xu, Zheng;Kim, Bo-Ram;Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • This paper proposes a road detection method using BP(Back-Propagation) neural network based on texture information of the each candidate road region segmented for satellite images. To segment the candidate road regions, the histogram-based binarization method proposed by N.Otsu is firstly performed and the neighboring regions surrounding road regions are then removed. And after extracting the principal color using the histogram of the segmented foreground, the candidate road regions are classified into the regions within ${\pm}25$ of the principal color. Finally, the road regions are segmented using BP neural network based on texture information of the candidate regions. The texture information in this paper is calculated using co-occurrence matrix and is used as an input data of the BP neural network. The proposed method is based on the fact that the road has the constant intensity and shape. The experiment demonstrated the validity of the proposed method and showed 90% detection accuracy for the various images.

  • PDF

Content-based image retrieval using region-based image querying (영역 기반의 영상 질의를 이용한 내용 기반 영상 검색)

  • Kim, Nac-Woo;Song, Ho-Young;Kim, Bong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.990-999
    • /
    • 2007
  • In this paper, we propose the region-based image retrieval method using JSEG which is a method for unsupervised segmentation of color-texture regions. JSEG is an algorithm that discretizes an image by color classification, makes the J-image by applying a region to window mask, and then segments the image by using a region growing and merging. The segmented image from JSEG is given to a user as the query image, and a user can select a few segmented regions as the query region. After finding the MBR of regions selected by user query and generating the multiple window masks based on the center point of MBR, we extract the feature vectors from selected regions. We use the accumulated histogram as the global descriptor for performance comparison of extracted feature vectors in each method. Our approach fast and accurately supplies the relevant images for the given query, as the feature vectors extracted from specific regions and global regions are simultaneously applied to image retrieval. Experimental evidence suggests that our algorithm outperforms the recent image-based methods for image indexing and retrieval.

Wavelet-Based Edge Detection Using Local Histogram Analysis in Images (영상에서 웨이블렛 기반 로컬 히스토그램 분석을 이용한 에지검출)

  • Park, Min-Joon;Kwon, Min-Jun;Kim, Gi-Hun;Shim, Han-Seul;Kim, Dong-Wook;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.359-371
    • /
    • 2011
  • Edge detection in images is an important step in image segmentation and object recognition as preprocessing for image processing. This paper presents a new edge detection using local histogram analysis based on wavelet transform. In this work, the wavelet transform uses three components (horizontal, vertical and diagonal) to find the magnitude of the gradient vector, instead of the conventional approach in which tw components are used. We compare the magnitude of the gradient vector with the threshold that is obtained from a local histogram analysis to conclude that an edge is present or not. Some experimental results for our edge detector with a Sobel, Canny, Scale Multiplication, and Mallat edge detectors on sample images are given and the performances of these edge detectors are compared in terms of quantitative and qualitative measures. Our detector performs better than the other wavelet-based detectors such as Scale Multiplication and Mallat detectors. Our edge detector also preserves a good performance even if the Sobel and Canny detector are sharply low when the images are highly corrupted.