• Title/Summary/Keyword: histogram-based segmentation

Search Result 122, Processing Time 0.03 seconds

Contrast Enhancement Using a Density based Sub-histogram Equalization Technique (밀도기반의 분할된 히스토그램 평활화를 통한 대비 향상 기법)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.10-21
    • /
    • 2009
  • In order to enhance the contrast in the regions where the pixels have similar intensities, this paper presents a new histogram equalization scheme. Conventional global equalization schemes over-equalizes those regions so that too bright or dark pixels are resulted and local equalization schemes produce unexpected discontinuities at the boundaries of the blocks. The proposed algorithm segments the original histogram into sub-histograms with reference to brightness level and equalizes each sub-histogram with the limited extents of equalization considering its mean and variance. The final image is determined as the weighted sum of the equalized images obtained by using the sub-histogram equalizations. By limiting the maximum and minimum ranges of equalization operations on individual sub-histograms, the over-equalization effect is eliminated. Also the result image does not miss feature information in low density histogram region since the remaining these area is applied separating equalization. This paper includes how to determine the segmentation points in the histogram. The proposed algorithm has been tested with more than 100 images having various contrast in the images and the results are compared to the conventional approaches to show its superiority.

Selection Method of Multiple Threshold Based on Probability Distribution function Using Fuzzy Clustering (퍼지 클러스터링을 이용한 확률분포함수 기반의 다중문턱값 선정법)

  • Kim, Gyung-Bum;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.48-57
    • /
    • 1999
  • Applications of thresholding technique are based on the assumption that object and background pixels in a digital image can be distinguished by their gray level values. For the segmentation of more complex images, it is necessary to resort to multiple threshold selection techniques. This paper describes a new method for multiple threshold selection of gray level images which are not clearly distinguishable from the background. The proposed method consists of three main stages. In the first stage, a probability distribution function for a gray level histogram of an image is derived. Cluster points are defined according to the probability distribution function. In the second stage, fuzzy partition matrix of the probability distribution function is generated through the fuzzy clustering process. Finally, elements of the fuzzy partition matrix are classified as clusters according to gray level values by using max-membership method. Boundary values of classified clusters are selected as multiple threshold. In order to verify the performance of the developed algorithm, automatic inspection process of ball grid array is presented.

  • PDF

Adaptive Optimal Thresholding for the Segmentation of Individual Tooth from CT Images (CT영상에서 개별 치아 분리를 위한 적응 최적 임계화 방안)

  • Heo, Hoon;Chae, Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.163-174
    • /
    • 2004
  • The 3D tooth model in which each tooth can be manipulated individualy is essential component for the orthodontic simulation and implant simulation in dental field. For the reconstruction of such a tooth model, we need an image segmentation algorithm capable of separating individual tooth from neighboring teeth and alveolar bone. In this paper we propose a CT image normalization method and adaptive optimal thresholding algorithm for the segmenation of tooth region in CT image slices. The proposed segmentation algorithm is based on the fact that the shape and intensity of tooth change gradually among CT image slices. It generates temporary boundary of a tooth by using the threshold value estimated in the previous imge slice, and compute histograms for the inner region and the outer region seperated by the temporary boundary. The optimal threshold value generating the finnal tooth region is computed based on these two histogram.

Region Segmentation Algorithm of Object Using Self-Extraction of Reference Template (기준 템플릿의 자동 생성 기법을 이용한 물체 영역 분할 알고리즘)

  • Lee, Gyoon-Jung;Lee, Dong-Won;Joo, Jae-Heum;Bae, Jong-Gab;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • In this paper, we propose the technique detecting interest object region effectively in the images from periscope of submarine based on self-generated template. First, we extract the sea-sky line, and divide it into sky and sea area from background region based on the sea-sky line. In each divided background region, the blocks which can be represented in each background region are set as a reference template. After dividing an image into several same size of blocks, we apply multi template matching to the divided search blocks and histogram template to divide the image into object region and background region. Proposed algorithm is adapted to various images in which objects exist in the background of sea and sky. We verified that proposed algorithm performed properly without given informmed prby prior learning.ropso, regardless of the slope of sea-sky line and the locmed p of object based on sea-sky line, we verified that the objects region was segmented effectively from the input image.

Robust object tracking using projected motion and histogram intersection (투영된 모션과 히스토그램 인터섹션을 이용한 강건한 물체추적)

  • Lee, Bong-Seok;Moon, Young-Shik
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.99-104
    • /
    • 2002
  • Existing methods of object tracking use template matching, re-detection of object boundaries or motion information. The template matching method requires very long computation time. The re-detection of object boundaries may produce false edges. The method using motion information shows poor tracking performance in moving camera. In this paper, a robust object tracking algorithm is proposed, using projected motion and histogram intersection. The initial object image is constructed by selecting the regions of interest after image segmentation. From the selected object, the approximate displacement of the object is computed by using 1-dimensional intensity projection in horizontal and vortical direction. Based on the estimated displacement, various template masks are constructed for possible orientations and scales of the object. The best template is selected by using the modified histogram intersection method. The robustness of the proposed tracking algorithm has been verified by experimental results.

Selective Histogram Matching of Multi-temporal High Resolution Satellite Images Considering Shadow Effects in Urban Area (도심지역의 그림자 영향을 고려한 다시기 고해상도 위성영상의 선택적 히스토그램 매칭)

  • Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • Additional high resolution satellite images, other period or site, are essential for efficient city modeling and analysis. However, the same ground objects have a radiometric inconsistency in different satellite images and it debase the quality of image processing and analysis. Moreover, in an urban area, buildings, trees, bridges, and other artificial objects cause shadow effects, which lower the performance of relative radiometric normalization. Therefore, in this study, we exclude shadow areas and suggest the selective histogram matching methods for image based application without supplementary digital elevation model or geometric informations of sun and sensor. We extract the shadow objects first using adjacency informations with the building edge buffer and spatial and spectral attributes derived from the image segmentation. And, Outlier objects like a asphalt roads are removed. Finally, selective histogram matching is performed from the shadow masked multi-temporal Quickbird-2 images.

Segmentation of Lung and Lung Lobes in EBT Medical Images (EBT 의료 영상에서 폐 영역 추출 및 폐엽 분할)

  • 김영희;이성기
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.276-292
    • /
    • 2004
  • In this paper. we present methods that extract lung regions from chest EBT(electron beam tomography) images then segment the extracted lung region into lung lobes. We use histogram based thresholding and mathematical morphology for extracting lung regions. For detecting pulmonary fissures, we use edge detector and knowledge-based search method. We suggest this edge detector, which uses adaptive filter scale, to work very well for real edge and insensitive for edge by noise. Our experiments showed about 95% accuracy or higher in extracting lung regions and about 5 pixel distance error in detecting pulmonary fissures.

Object Segmentation Using Depth Map (깊이 맵을 이용한 객체 분리 방법)

  • Yu, Kyung-Min;Cho, Yongjoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.639-640
    • /
    • 2013
  • In this study, a new method that finds an area where interesting objects are placed to generate DIBR-based intermediate images with higher quality. This method complements the existing object segmentation algorithm called Grabcut by finding the bounding box automatically, whereas the existing algorithm requires a user to select the region specifically. Then, the histogram of the depth map information is then used to separate the background and the frontal objects after applying the GrabCut algorithm. By using the new method, it is found that it produces better result than the existing algorithm. This paper describes the new method and future research.

  • PDF

Extraction of Tongue Region using Graph and Geometric Information (그래프 및 기하 정보를 이용한 설진 영역 추출)

  • Kim, Keun-Ho;Lee, Jeon;Choi, Eun-Ji;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2051-2057
    • /
    • 2007
  • In Oriental medicine, the status of a tongue is the important indicator to diagnose one's health like physiological and clinicopathological changes of inner parts of the body. The method of tongue diagnosis is not only convenient but also non-invasive and widely used in Oriental medicine. However, tongue diagnosis is affected by examination circumstances a lot like a light source, patient's posture and doctor's condition. To develop an automatic tongue diagnosis system for an objective and standardized diagnosis, segmenting a tongue is inevitable but difficult since the colors of a tongue, lips and skin in a mouth are similar. The proposed method includes preprocessing, graph-based over-segmentation, detecting positions with a local minimum over shading, detecting edge with color difference and estimating edge geometry from the probable structure of a tongue, where preprocessing performs down-sampling to reduce computation time, histogram equalization and edge enhancement. A tongue was segmented from a face image with a tongue from a digital tongue diagnosis system by the proposed method. According to three oriental medical doctors' evaluation, it produced the segmented region to include effective information and exclude a non-tongue region. It can be used to make an objective and standardized diagnosis.

The Content-based Image Retrieval using the Histogram Area Calculation and Color and Texture using Object Segmentation (색상과 질감을 이용한 객체 분할과 히스토그램 영역 계산을 이용한 내용기반 영상 검색)

  • Jang, Se-Young;Han, Deuk-Su;Yoo, Gi-Hyoung;Yoo, Kang-Soo;Kwak, Hoon-Sung
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.229-232
    • /
    • 2005
  • 본 논문에서는 새로운 HAC(Histogram Area Calculation)방법과 영상의 객체분할 방법을 소개한다. 히스토그램을 이용한 영상은 색상 공간의 특징 때문에 조명에 매우 민감하여 빛의 강도에 따라 유사성이 저하되는 경우가 있다. 또한 공간적 정보를 가지고 있지 않아, 전혀 다른 모양의 영상일지라도 칼라 분포가 같은 영상으로 볼 수 있다. 이 논문에서 제안한 방법은 히스토그램 영역을 임의의 영역으로 나눠, 영역들의 유사성을 매칭(matching) 시킨다. 2차 검색방법으로 원 영상에서의 색상 질감 정보가 동일한 영역을 군집화 하여, 영상 분할된 객체들을 이용하여 검색하는 방법이다. 실험 결과, 제안한 방법이 전통적인 히스토그램 방법보다 검색 성능이 효율적인 결과를 얻었다.

  • PDF