• Title/Summary/Keyword: histogram-based segmentation

Search Result 122, Processing Time 0.026 seconds

Locating Text in Web Images Using Image Based Approaches (웹 이미지로부터 이미지기반 문자추출)

  • Chin, Seongah;Choo, Moonwon
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.27-39
    • /
    • 2002
  • A locating text technique capable of locating and extracting text blocks in various Web images is presented here. Until now this area of work has been ignored by researchers even if this sort of text may be meaningful for internet users. The algorithms associated with the technique work without prior knowledge of the text orientation, size or font. In the work presented in this research, our text extraction algorithm utilizes useful edge detection followed by histogram analysis on the genuine characteristics of letters defined by text clustering region, to properly perform extraction of the text region that does not depend on font styles and sizes. By a number of experiments we have showed impressively acceptable results.

  • PDF

Quality Evaluation of Chest X-ray Images using Region Segmentation based on 3D Histogram (3D 히스토그램 기반 영역분할을 이용한 흉부 X선 영상 품질 평가)

  • Choi, Hyeon-Jin;Bea, Su-Bin;Park, Ye-Seul;Lee, Jung-Won
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.903-906
    • /
    • 2021
  • 인공지능 기술 발전으로, 의료영상 분야에서도 딥러닝 기반 질병 진단 연구가 활발히 진행되고 있다. 딥러닝 모델 개발 시, 학습 데이터 품질은 모델의 성능과 신뢰성에 매우 큰 영향을 미친다. 그러나 의료 분야의 경우 도메인 지식에 대한 진입 장벽이 높아 개발자가 학습에 사용되는 의료영상 데이터의 품질을 평가하기 어렵다. 이로 인해, 많은 의료영상 분야에서는 각 분야의 특성(질병의 종류, 관찰 아나토미 등)에 따른 영상 품질 평가 방법을 제시해왔다. 그러나 기존의 방법은 특정 질병에 초점이 맞춰져, 일반화된 품질 평가 기준을 제시하고 있지 않다. 따라서 본 논문에서는 대부분의 흉부 질환을 진단하기 위한 흉부 X선 영상의 품질을 평가할 수 있는 기준을 제안한다. 우선, 흉부 X선 영상을 대상으로 관찰된 영역인 심장, 횡격막, 견갑골, 폐 등을 분할하여, 3D 히스토그램을 기반으로 각 영역별 통계적인 정밀 품질 평가 기준을 제안한다. 본 연구에서는 JSRT, Chest 14의 오픈 데이터셋을 활용하여 적용 실험을 수행하였으며, 민감도는 97.6%, 특이도는 92.8%의 우수한 성능을 확인하였다.

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.

Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model (모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용한 깊이 정보 기반의 연속적인 사람 행동 인식 시스템)

  • Eum, Hyukmin;Lee, Heejin;Yoon, Changyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.471-476
    • /
    • 2016
  • In this paper, recognition system for continuous human action is explained by using motion history image and histogram of oriented gradient with spotter model based on depth information, and the spotter model which performs action spotting is proposed to improve recognition performance in the recognition system. The steps of this system are composed of pre-processing, human action and spotter modeling and continuous human action recognition. In pre-processing process, Depth-MHI-HOG is used to extract space-time template-based features after image segmentation, and human action and spotter modeling generates sequence by using the extracted feature. Human action models which are appropriate for each of defined action and a proposed spotter model are created by using these generated sequences and the hidden markov model. Continuous human action recognition performs action spotting to segment meaningful action and meaningless action by the spotter model in continuous action sequence, and continuously recognizes human action comparing probability values of model for meaningful action sequence. Experimental results demonstrate that the proposed model efficiently improves recognition performance in continuous action recognition system.

Color Image Query Using Hierachical Search by Region of Interest with Color Indexing

  • Sombutkaew, Rattikorn;Chitsobhuk, Orachat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.810-813
    • /
    • 2004
  • Indexing and Retrieving images from large and varied collections using image content as a key is a challenging and important problem in computer vision application. In this paper, a color Content-based Image Retrieval (CBIR) system using hierarchical Region of Interest (ROI) query and indexing is presented. During indexing process, First, The ROIs on every image in the image database are extracted using a region-based image segmentation technique, The JSEG approach is selected to handle this problem in order to create color-texture regions. Then, Color features in form of histogram and correlogram are then extracted from each segmented regions. Finally, The features are stored in the database as the key to retrieve the relevant images. As in the retrieval system, users are allowed to select ROI directly over the sample or user's submission image and the query process then focuses on the content of the selected ROI in order to find those images containing similar regions from the database. The hierarchical region-of-interest query is performed to retrieve the similar images. Two-level search is exploited in this paper. In the first level, the most important regions, usually the large regions at the center of user's query, are used to retrieve images having similar regions using static search. This ensures that we can retrieve all the images having the most important regions. In the second level, all the remaining regions in user's query are used to search from all the retrieved images obtained from the first level. The experimental results using the indexing technique show good retrieval performance over a variety of image collections, also great reduction in the amount of searching time.

  • PDF

Spatiotemporal Saliency-Based Video Summarization on a Smartphone (스마트폰에서의 시공간적 중요도 기반의 비디오 요약)

  • Lee, Won Beom;Williem, Williem;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.185-195
    • /
    • 2013
  • In this paper, we propose a video summarization technique on a smartphone, based on spatiotemporal saliency. The proposed technique detects scene changes by computing the difference of the color histogram, which is robust to camera and object motion. Then the similarity between adjacent frames, face region, and frame saliency are computed to analyze the spatiotemporal saliency in a video clip. Over-segmented hierarchical tree is created using scene changes and is updated iteratively using mergence and maintenance energies computed during the analysis procedure. In the updated hierarchical tree, segmented frames are extracted by applying a greedy algorithm on the node with high saliency when it satisfies the reduction ratio and the minimum interval requested by the user. Experimental result shows that the proposed method summaries a 2 minute-length video in about 10 seconds on a commercial smartphone. The summarization quality is superior to the commercial video editing software, Muvee.

Decision of Road Direction by Polygonal Approximation. (다각근사법을 이용한 도로방향 결정)

  • Lim, Young-Cheol;Park, Jong-Gun;Kim, Eui-Sun;Park, Jin-Su;Park, Chang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1398-1400
    • /
    • 1996
  • In this paper, a method of the decision of the road direction for ALV(Autonomous Land Vehicle) road following by region-based segmentation is presented. The decision of the road direction requires extracting road regions from images in real-time to guide the navigation of ALV on the roadway. Two thresholds to discriminate between road and non-road region in the image are easily decided, using knowledge of problem region and polygonal approximation that searches multiple peaks and valleys in histogram of a road image. The most likely road region of the binary image is selected from original image by these steps. The location of a vanishing point to indicate the direction of the road can be obtained applying it to X-Y profile of the binary road region again. It can successfully steer a ALV along a road reliably, even in the presence of fluctuation of illumination condition, bad road surface condition such as hidden boundaries, shadows, road patches, dirt and water stains, and unusual road condition. Pyramid structure also saves time in processing road images and a real-time image processing for achieving navigation of ALV is implemented. The efficacy of this approach is demonstrated using several real-world road images.

  • PDF

A Color Flame Region Segmentation Method Using Temperature Distribution Characteristics of Flame (화염의 온도 분포 특성을 이용한 컬러화염 영역분할 방법)

  • Lee, Hyun-Sul;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.33-37
    • /
    • 2014
  • This paper propose a method to sort flame regions and non-flame regions in a color image based on temperature Characteristics of flame. The traditional algorithms simply detect flame regions those are colored between yellow and red and there are lot of false detection in this method. But the colors of real flame are fallen between white and red and flame color variation over the flame. In this paper, it reduce false detection by separating colors according to temperature Characteristics of flame. The proposed method firstly finds a color model to express the temperature Characteristics of fire and then the color model is non-linearly quantized based on color values and analyzed using histogram and finally detect the candidate flame regions. The proposed method has 71.8% of matching rate and if it is compared with non-matching rate of traditional algorithms, the non-matching rate is improved by 27 times than others.

Application Feasibility Study of Non-local Means Algorithm in a Miniaturized Vein Near-infrared Imaging System (정맥 관찰용 소형 근적외선 영상 시스템에서의 비지역적평균 알고리즘 적용 가능성 연구)

  • Hyun-Woo Jeong;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.679-684
    • /
    • 2023
  • Venous puncture is widely used to obtain blood samples for pathological examination. Because the invasive venipuncture method using a needle is repeatedly performed, the pain suffered by the patient increases, so our research team pre-developed a miniaturized near-infrared (NIR) imaging system in advance. To improve the image quality of the acquired NIR images, this study aims to model the non-local means (NLM) algorithm, which is well known to be efficient in noise reduction, and analyze its applicability in the system. The developed NIR imaging system is based on the principle that infrared rays pass through dichroic and long-pass filters and are detected by a CMOS sensor module. The proposed NLM algorithm is modeled based on the principle of replacing the pixel from which noise is to be removed with a value that reflects the distances between surrounding pixels. After acquiring an NIR image with a central wavelength of 850 nm, the NLM algorithm was applied to segment the final vein area through histogram equalization. As a result, the coefficient of variation of the NIR image of the vein using the NLM algorithm was 0.247 on average, which was an excellent result compared to conventional filtering methods. In addition, the dice similarity coefficient value of the NLM algorithm was improved by 62.91 and 9.40%, respectively, compared to the median filter and total variation methods. In conclusion, we demonstrated that the NLM algorithm can acquire accurate segmentation of veins acquired with a NIR imaging system.

Detection of Gradual Transitions in MPEG Compressed Video using Hidden Markov Model (은닉 마르코프 모델을 이용한 MPEG 압축 비디오에서의 점진적 변환의 검출)

  • Choi, Sung-Min;Kim, Dai-Jin;Bang, Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.379-386
    • /
    • 2004
  • Video segmentation is a fundamental task in video indexing and it includes two kinds of shot change detections such as the abrupt transition and the gradual transition. The abrupt shot boundaries are detected by computing the image-based distance between adjacent frames and comparing this distance with a pre-determined threshold value. However, the gradual shot boundaries are difficult to detect with this approach. To overcome this difficulty, we propose the method that detects gradual transition in the MPEG compressed video using the HMM (Hidden Markov Model). We take two different HMMs such as a discrete HMM and a continuous HMM with a Gaussian mixture model. As image features for HMM's observations, we use two distinct features such as the difference of histogram of DC images between two adjacent frames and the difference of each individual macroblock's deviations at the corresponding macroblock's between two adjacent frames, where deviation means an arithmetic difference of each macroblock's DC value from the mean of DC values in the given frame. Furthermore, we obtain the DC sequences of P and B frame by the first order approximation for a fast and effective computation. Experiment results show that we obtain the best detection and classification performance of gradual transitions when a continuous HMM with one Gaussian model is taken and two image features are used together.