• Title/Summary/Keyword: histogram-based segmentation

Search Result 122, Processing Time 0.03 seconds

The Effect of Training Patch Size and ConvNeXt application on the Accuracy of CycleGAN-based Satellite Image Simulation (학습패치 크기와 ConvNeXt 적용이 CycleGAN 기반 위성영상 모의 정확도에 미치는 영향)

  • Won, Taeyeon;Jo, Su Min;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2022
  • A method of restoring the occluded area was proposed by referring to images taken with the same types of sensors on high-resolution optical satellite images through deep learning. For the natural continuity of the simulated image with the occlusion region and the surrounding image while maintaining the pixel distribution of the original image as much as possible in the patch segmentation image, CycleGAN (Cycle Generative Adversarial Network) method with ConvNeXt block applied was used to analyze three experimental regions. In addition, We compared the experimental results of a training patch size of 512*512 pixels and a 1024*1024 pixel size that was doubled. As a result of experimenting with three regions with different characteristics,the ConvNeXt CycleGAN methodology showed an improved R2 value compared to the existing CycleGAN-applied image and histogram matching image. For the experiment by patch size used for training, an R2 value of about 0.98 was generated for a patch of 1024*1024 pixels. Furthermore, As a result of comparing the pixel distribution for each image band, the simulation result trained with a large patch size showed a more similar histogram distribution to the original image. Therefore, by using ConvNeXt CycleGAN, which is more advanced than the image applied with the existing CycleGAN method and the histogram-matching image, it is possible to derive simulation results similar to the original image and perform a successful simulation.

Microscopic Image-based Cancer Cell Viability-related Phenotype Extraction (현미경 영상 기반 암세포 생존력 관련 표현형 추출)

  • Misun Kang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.176-181
    • /
    • 2023
  • During cancer treatment, the patient's response to drugs appears differently at the cellular level. In this paper, an image-based cell phenotypic feature quantification and key feature selection method are presented to predict the response of patient-derived cancer cells to a specific drug. In order to analyze the viability characteristics of cancer cells, high-definition microscope images in which cell nuclei are fluorescently stained are used, and individual-level cell analysis is performed. To this end, first, image stitching is performed for analysis of the same environment in units of the well plates, and uneven brightness due to the effects of illumination is adjusted based on the histogram. In order to automatically segment only the cell nucleus region, which is the region of interest, from the improved image, a superpixel-based segmentation technique is applied using the fluorescence expression level and morphological information. After extracting 242 types of features from the image through the segmented cell region information, only the features related to cell viability are selected through the ReliefF algorithm. The proposed method can be applied to cell image-based phenotypic screening to determine a patient's response to a drug.

Automatic Segmentation of Pulmonary Structures using Gray-level Information of Chest CT Images (흉부 CT 영상의 밝기값 정보를 사용한 폐구조물 자동 분할)

  • Yim, Ye-Ny;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.942-952
    • /
    • 2006
  • We propose an automatic segmentation method for identifying pulmonary structures using gray-level information of chest CT images. Our method consists of following five steps. First, to segment pulmonary structures based on the difference of gray-level value, we select the threshold using optimal thresholding. Second, we separate the thorax from the background air and then the lungs and airways from the thorax by applying the inverse operation of 2D region growing in chest CT images. To eliminate non-pulmonary structures which has similar intensities with the lungs, we use 3D connected component labeling. Third, we segment the trachea and left and right mainstem bronchi using 3D branch-based region growing in chest CT images. Fourth, we can obtain accurate lung boundaries by subtracting the result of third step from the result of second step. Finally, we select the threshold in accordance with histogram analysis and then segment radio-dense pulmonary vessels by applying gray-level thresholding to the result of the second step. To evaluate the accuracy of proposed method, we make a visual inspection of segmentation result of lungs, airways and pulmonary vessels. We compare the result of the conventional region growing with the result of proposed 3D branch-based region growing. Experimental results show that our proposed method extracts lung boundaries, airways, and pulmonary vessels automatically and accurately.

Automatic Extraction of Major Object in the Image based on Image Composition (영상구도에 근거한 영상내의 주요객체 자동추출 기법)

  • Kang, Seon-Do;Yoo, Hun-Woo;Shin, Young-Geun;Jang, Dong-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.8-17
    • /
    • 2008
  • A new algorithm for automatic extraction of interesting objects is proposed in this paper. The proposed algorithm can be summarized in two steps. First, segmentation of color image that split interesting objects and backgrounds is performed. According to the research stating, 'Humans perceive things by contracting color into three to four essential colors,' a color image is segmented into three regions utilizing k-mean algorithm, followed by annexing the regions when the similarities of them exceeds the critical value based on the calculation of degrees in the histogram similarity, Second, identifying the interesting objects out of the segmented image, partitioned by the image composition theory, is performed. To have a good picture, it is important to adjust positions of interesting objects according to picture composition. Extracting objects is a retro-deduction process using a weighted mask designed upon the triangular composition of picture. To prove the quality of the proposed method, experiments are performed over four hundreds images as well as comparison with recently proposed KMCC and GBIS methods.

Real-Time 2D-to-3D Conversion for 3DTV using Time-Coherent Depth-Map Generation Method

  • Nam, Seung-Woo;Kim, Hye-Sun;Ban, Yun-Ji;Chien, Sung-Il
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.9-16
    • /
    • 2014
  • Depth-image-based rendering is generally used in real-time 2D-to-3D conversion for 3DTV. However, inaccurate depth maps cause flickering issues between image frames in a video sequence, resulting in eye fatigue while viewing 3DTV. To resolve this flickering issue, we propose a new 2D-to-3D conversion scheme based on fast and robust depth-map generation from a 2D video sequence. The proposed depth-map generation algorithm divides an input video sequence into several cuts using a color histogram. The initial depth of each cut is assigned based on a hypothesized depth-gradient model. The initial depth map of the current frame is refined using color and motion information. Thereafter, the depth map of the next frame is updated using the difference image to reduce depth flickering. The experimental results confirm that the proposed scheme performs real-time 2D-to-3D conversions effectively and reduces human eye fatigue.

Phase Segmentation of PVA Fiber-Reinforced Cementitious Composites Using U-net Deep Learning Approach (U-net 딥러닝 기법을 활용한 PVA 섬유 보강 시멘트 복합체의 섬유 분리)

  • Jeewoo Suh;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.323-330
    • /
    • 2023
  • The development of an analysis model that reflects the microstructure characteristics of polyvinyl alcohol (PVA) fiber-reinforced cementitious composites, which have a highly complex microstructure, enables synergy between efficient material design and real experiments. PVA fiber orientations are an important factor that influences the mechanical behavior of PVA fiber-reinforced cementitious composites. Owing to the difficulty in distinguishing the gray level value obtained from micro-CT images of PVA fibers from adjacent phases, fiber segmentation is time-consuming work. In this study, a micro-CT test with a voxel size of 0.65 ㎛3 was performed to investigate the three-dimensional distribution of fibers. To segment the fibers and generate training data, histogram, morphology, and gradient-based phase-segmentation methods were used. A U-net model was proposed to segment fibers from micro-CT images of PVA fiber-reinforced cementitious composites. Data augmentation was applied to increase the accuracy of the training, using a total of 1024 images as training data. The performance of the model was evaluated using accuracy, precision, recall, and F1 score. The trained model achieved a high fiber segmentation performance and efficiency, and the approach can be applied to other specimens as well.

A Basic Study on the Fire Flame Extraction of Non-Residential Facilities Based on Core Object Extraction (핵심 객체 추출에 기반한 비주거 시설의 화재불꽃 추출에 관한 기초 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.71-79
    • /
    • 2017
  • Recently, Fire watching and dangerous substances monitoring system has been being developed to enhance various fire related security. It is generally assumed that fire flame extraction plays a very important role on this monitoring system. In this study, we propose the fire flame extraction method of Non-Residential Facilities based on core object extraction in image. A core object is defined as a comparatively large object at center of the image. First of all, an input image and its decreased resolution image are segmented. Segmented regions are classified as the outer or the inner region. The outer region is adjacent to boundaries of the image and the rest is not. Then core object regions and core background regions are selected from the inner region and the outer region, respectively. Core object regions are the representative regions for the object and are selected by using the information about the region size and location. Each inner region is classified into foreground or background region by comparing its values of a color histogram intersection of the inner region against the core object region and the core background region. Finally, the extracted core object region is determined as fire flame object in the image. Through experiments, we find that to provide a basic measures can respond effectively and quickly to fire in non-residential facilities.

The Shot Change Detection Using a Hybrid Clustering (하이브리드 클러스터링을 이용한 샷 전환 검출)

  • Lee, Ji-Hyun;Kang, Oh-Hyung;Na, Do-Won;Lee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.635-638
    • /
    • 2005
  • The purpose of video segmentation is to segment video sequence into shots where each shot represents a sequence of frames having the same contents, and then select key frames from each shot for indexing. There are two types of shot changes, abrupt and gradual. The major problem of shot change detection lies on the difficulty of specifying the correct threshold, which determines the performance of shot change detection. As to the clustering approach, the right number of clusters is hard to be found. Different clustering may lead to completely different results. In this thesis, we propose a video segmentation method using a color-X$^2$ intensity histogram-based fuzzy c-means clustering algorithm.

  • PDF

Segmentation and Recognition of Traffic Signs using Shape Information and Edge Image in Real Image (실영상에서 형태 정보와 에지 영상을 이용한 교통 표지판 영역 추출과 인식)

  • Kwak, Hyun-Wook;Oh,Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.149-158
    • /
    • 2004
  • This study proposes a method for segmentation and recognition of traffic signs using shape information and edge image in real image. It first segments traffic sign candidate regions by connected component algorithm from binary images, obtained by utilizing the RGB color ratio of each pixel in the image, and then extracts actual traffic signs based on their symmetries on X- and Y-axes. Histogram equalization is performed for unsegmented candidate regions caused by low contrast in the image. In the recognition stage, it utilizes shape information including projection profiles on X- and Y-axes, moment, and the number of crossings and distance which concentric circular patterns and 8-directional rays from region center intersects with edges of traffic signs. It finally performs recognition by measuring similarity with the templates in the database. It will be shown from several experimental results that the system is robust to environmental factors, such as light and weather condition.

Content based Video Segmentation Algorithm using Comparison of Pattern Similarity (장면의 유사도 패턴 비교를 이용한 내용기반 동영상 분할 알고리즘)

  • Won, In-Su;Cho, Ju-Hee;Na, Sang-Il;Jin, Ju-Kyong;Jeong, Jae-Hyup;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1252-1261
    • /
    • 2011
  • In this paper, we propose the comparison method of pattern similarity for video segmentation algorithm. The shot boundary type is categorized as 2 types, abrupt change and gradual change. The representative examples of gradual change are dissolve, fade-in, fade-out or wipe transition. The proposed method consider the problem to detect shot boundary as 2-class problem. We concentrated if the shot boundary event happens or not. It is essential to define similarity between frames for shot boundary detection. We proposed 2 similarity measures, within similarity and between similarity. The within similarity is defined by feature comparison between frames belong to same shot. The between similarity is defined by feature comparison between frames belong to different scene. Finally we calculated the statistical patterns comparison between the within similarity and between similarity. Because this measure is robust to flash light or object movement, our proposed algorithm make contribution towards reducing false positive rate. We employed color histogram and mean of sub-block on frame image as frame feature. We performed the experimental evaluation with video dataset including set of TREC-2001 and TREC-2002. The proposed algorithm shows the performance, 91.84% recall and 86.43% precision in experimental circumstance.