• 제목/요약/키워드: histogram-based segmentation

검색결과 122건 처리시간 0.03초

Entropic Image Thresholding Segmentation Based on Gabor Histogram

  • Yi, Sanli;Zhang, Guifang;He, Jianfeng;Tong, Lirong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2113-2128
    • /
    • 2019
  • Image thresholding techniques introducing spatial information are widely used image segmentation. Some methods are used to calculate the optimal threshold by building a specific histogram with different parameters, such as gray value of pixel, average gray value and gradient-magnitude, etc. However, these methods still have some limitations. In this paper, an entropic thresholding method based on Gabor histogram (a new 2D histogram constructed by using Gabor filter) is applied to image segmentation, which can distinguish foreground/background, edge and noise of image effectively. Comparing with some methods, including 2D-KSW, GLSC-KSW, 2D-D-KSW and GLGM-KSW, the proposed method, tested on 10 realistic images for segmentation, presents a higher effectiveness and robustness.

The Improvement of Rough- set Theory Histogram in Color- image Segmentation

  • Zheng, Qi;Lee, Hyo Jong
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.429-430
    • /
    • 2011
  • Roughness set theory is a popular topic to use in color-image segmentation. A new popular color image segmentation algorithm is proposed by scientists with the point using traditional histogram and Histon construct roughness set histogram. But, there is still a problem about that is the correlativity of color vector in roughness set histogram, which take an inactive effect in the process of color-image segmentation. Therefore, this paper represents further research based on this and proposed an improved method proved through lot of experiments. The experimental result reduces the correlativity of color vector in roughness set histogram and calculation time remarkably.

Hierarchical Cluster Analysis Histogram Thresholding with Local Minima

  • Sengee, Nyamlkhagva;Radnaabazar, Chinzorig;Batsuuri, Suvdaa;Tsedendamba, Khurel-Ochir;Telue, Berekjan
    • Journal of Multimedia Information System
    • /
    • 제4권4호
    • /
    • pp.189-194
    • /
    • 2017
  • In this study, we propose a method which is based on "Image segmentation by histogram thresholding using hierarchical cluster analysis"/HCA/ and "A nonparametric approach for histogram segmentation"/NHS/. HCA method uses that all histogram bins are one cluster then it reduces cluster numbers by using distance metric. Because this method has too many clusters, it is more computation. In order to eliminate disadvantages of "HCA" method, we used "NHS" method. NHS method finds all local minima of histogram. To reduce cluster number, we use NHS method which is fast. In our approach, we combine those two methods to eliminate disadvantages of Arifin method. The proposed method is not only less computational than "HCA" method because combined method has few clusters but also it uses local minima of histogram which is computed by "NHS".

계층적 히스토그램을 이용한 컬러영상분할 (Color Image Segmentation using Hierarchical Histogram)

  • 김소정;정경훈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1771-1774
    • /
    • 2003
  • Image segmentation is very important technique as preprocessing. It is used for various applications such as object recognition, computer vision, object based image compression. In this paper, a method which segments the multidimensional image using a hierarchical histogram approach, is proposed. The hierarchical histogram approach is a method that decomposes the multi-dimensional situation into multi levels of 1 dimensional situations. It has the advantage of the rapid and easy calculation of the histogram, and at the same time because the histogram is applied at each level and not as a whole, it is possible to have more detailed partitioning of the situation.

  • PDF

히스토그램의 양방향 분포함수를 이용한 영상분할 (Image Segmentation Using Bi-directional Distribution Functions of Histogram)

  • 남윤석;하영호;김수중
    • 대한전자공학회논문지
    • /
    • 제24권6호
    • /
    • pp.1020-1024
    • /
    • 1987
  • Image segmentation based on the curvature of bi-directiona distribution functions of histogram with no mode informations is proposed. The curvature is an oscillating function and can be approximated to a polynomial form with a least square method using the Chebyshev basis. Nonhomogeneous linea equations are solved by Gauss-elimination method. In the proposed algorithm, critical points of the curvature are obtained on each direction to compensate the segmentation parameters, which can be ignored in only one-directional histogram.

  • PDF

Color-based Image Retrieval using Color Segmentation and Histogram Reconstruction

  • Kim, Hyun-Sool;Shin, Dae-Kyu;Kim, Taek-Soo;Chung, Tae-Yun;Park, Sang-Hui
    • KIEE International Transaction on Systems and Control
    • /
    • 제12D권1호
    • /
    • pp.1-6
    • /
    • 2002
  • In this study, we propose the new color-based image retrieval technique using the representative colors of images and their ratios to a total image size obtained through color segmentation in HSV color space. Color information of an image is described by reconstructing the color histogram of an image through Gaussian modelling to its representative colors and ratios. And the similarity between two images is measured by histogram intersection. The proposed method is compared with the existing methods by performing retrieval experiments for various 1280 trademark image database.

  • PDF

이완법을 이용한 형광안저화상의 국소특징 검출 (Local Feature Detection on the Ocular Fundus Fluorescein angiogram Using Relaxation Process)

  • ;하영호;홍재근;김수중
    • 대한전자공학회논문지
    • /
    • 제24권5호
    • /
    • pp.856-862
    • /
    • 1987
  • An local adaptive image segmentatin algorithm for local feature detection and effective clustering of unimodal histogram shape are proposed. Local adaptive difference image and its histogram are obtained from the input image. The parameters are derived from the histogram and used for the segmentation based on relaxatin process. The results showed effective region segmentation and good noise cleaning for the ocular fundus fluorescein angiogram which has low contrast and unimodal histogram.

  • PDF

히스토그램에 기반한 다중스펙트럼 뇌 자기공명영상의 분할 (Segmentation of Multispectral Brain MRI Based on Histogram)

  • 윤옥경;김동휘
    • 한국산업정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.46-54
    • /
    • 2003
  • 본 논문에서는 T1 강조 영상, T2 강조 영상 그리고 PD 영상의 히스토그램 특징을 상호 보완적으로 이용한 영상 분할 방법을 제안한다. 제안한 분할 알고리듬은 3단계로 이루어지는데, 첫 번째 단계에서는 T1과 T2, PD 영상으로부터 각각의 대뇌 영상을 추출하고, 두 번째 단계에서는 대뇌 영상의 히스토그램에서 봉우리 범위를 추출하고, 마지막 단계에서는 클러스터링을 이용하여 대뇌 영상을 분할한다. 본 논문에서는 봉우리 범위에 따른 분할결과와 수행 시간을 비교하고 기존의 분할 방법에 의한 실험 결과와 수행시간을 비교하여 보이는데 제안한 방법의 분할결과가 기존의 방법에 의한 결과보다 더 나은 결과를 보임을 확인할 수 있었다.

  • PDF

Ship Detection Using Edge-Based Segmentation and Histogram of Oriented Gradient with Ship Size Ratio

  • Eum, Hyukmin;Bae, Jaeyun;Yoon, Changyong;Kim, Euntai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.251-259
    • /
    • 2015
  • In this paper, a ship detection method is proposed; this method uses edge-based segmentation and histogram of oriented gradient (HOG) with the ship size ratio. The proposed method can prevent a marine collision accident by detecting ships at close range. Furthermore, unlike radar, the method can detect ships that have small size and absorb radio waves because it involves the use of a vision-based system. This system performs three operations. First, the foreground is separated from the background and candidates are detected using Sobel edge detection and morphological operations in the edge-based segmentation part. Second, features are extracted by employing HOG descriptors with the ship size ratio from the detected candidate. Finally, a support vector machine (SVM) verifies whether the candidates are ships. The performance of these methods is demonstrated by comparing their results with the results of other segmentation methods using eight-fold cross validation for the experimental results.

소형 표적 검출을 위한 히스토그램 기반의 영상분할 기법 연구 (A Study on Image Segmentation Method Based on a Histogram for Small Target Detection)

  • 양동원;강석종;윤주홍
    • 한국멀티미디어학회논문지
    • /
    • 제15권11호
    • /
    • pp.1305-1318
    • /
    • 2012
  • 영상분할은 영상 처리 및 패턴 인식에서 매우 어려운 전처리 과정 중 하나이다. 일반적으로는 단순하고 구현이 쉽기 때문에 OTSU의 방법이 많이 사용되고 있지만, 영상의 히스토그램이 단일 분포를 갖거나 단일 분포에 가까울 경우에는 영상 분할이 정확히 되지 못한다. 또한, 만일 표적이 영상에 비해서 소형인 경우 표적의 히스토그램 분포가 작아져서 단일 분포에 가까워진다. 본 논문에서는 소형 표적 검출을 위한 개선된 영상 분할 기법을 제안하였다. 단일 분포 히스토그램의 단점을 극복하기 위하여 배경 히스토그램의 영향을 감소시키는 기법을 적용하였으며, SNR을 높이기 위하여 지역 평균화 기법을 1D OTSU에 적용하였다. 실제 열 영상을 기반으로 실험을 수행한 결과 2D OTSU 방법에 비해서 연산 시간은 크게 줄었으며, 영상 분할 결과는 개선되었음을 확인하였다.