• 제목/요약/키워드: hippocampal formation

검색결과 42건 처리시간 0.019초

Distinct Effect of Neurotrophins Delivered Simultaneously by an Adenoviral Vector on Neurite Outgrowth of Neural Precursor Cells from Different Regions of the Brain

  • Yoo, Min-Joo;Joung, In-Sil;Han, Ah-Mi;Yoon, Hye-Hyun;KimKwon, Yun-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권12호
    • /
    • pp.2033-2041
    • /
    • 2007
  • For many years, it has been demonstrated that neurotrophins regulate the adult nervous system, implicating their potential as therapeutic agents for the treatment of neurodegenerative diseases. We generated adenoviral vectors encoding brain-derived neutotrophin factor (BDNF) and neurotrophin-3 (NT3) and tested either separately or together for the ability to induce differentiation of neuronal precursor cells with two different origins. Separate transduction of adenovirus delivering BDNF (BDNF-Ad) or NT3 (NT3-Ad) induced the neuronal differentiation in hippocampal and cortical precursor cells. NT3-Ad infected cells extended short neurites, whereas BDNF-Ad infected cells had longer neurites. In the early differentiation of hippocampal precursor cells, simultaneous infection of BDNF-Ad and NT3-Ad promoted further differentiation and neurite elongation compared with the separate infection of each virus. In contrast, simultaneous infection did not show the synergistic effect in the cortical precursor cells, suggesting that the neurotrophins play distinct roles in different regions of the brain. However, the numbers of neurites and spines per differentiated cells were markedly increased in cortical as well as hippocampal precursor cells, indicating the promotion of efficient neurite elongation and formation of dendritic spine, when BDNF-Ad and NT3-Ad were co-infected. These results suggest more studies in the effect of a combinatorial use of neurotrophins on different sites of brain need to be carried out to develop gene therapy protocols for neurodegenerative diseases.

흰쥐 해마의 치상회에서 압박자극 적용이 뇌 신경세포 증식에 미치는 영향 (Effects of Compression Stimulation Application on Cell Proliferation in the Hippocampal Dentate Gyrus of the Sprague-Dawley Rats)

  • 유병규;김경미;김창주
    • 대한감각통합치료학회지
    • /
    • 제2권1호
    • /
    • pp.21-32
    • /
    • 2004
  • Objective : Effect of treadmill exercise on hippocampal neural cell proliferation under normal conditions and alcohol intoxication conditions has been recently studied; however, this effect under sensory stimulation application has not clarified yet. In the present study, the effect of compression stimulation application on hippocampal neural cell proliferation in the dentate gyrus in normal and alcohol intoxicated rats was investigated. Methods : Experimental design: comparative investigation on number of 5-Bromo-2'-deoxyuridine(BrdU)B-positive cells in dentate gyrus 5 days after commencement. Setting: animal laboratory. Participants: male Sprague-Dawley rats of 3weeks old in age weighing $80{\pm}10gm$. Intervention: animals were randomly assigned into 4 groups; control-rest group(n=8), control-compression group(n=8), alcohol intoxication-rest group(n=8) and alcohol intoxication-compression group(n=8). Animals of the alcohol intoxicated groups were injected intraperitoneally with alcohol(2g/kg) twice per day for 3 days. All animals were injected BrdU(50mg/kg) intraperitoneally, and rats compression stimulation application groups were compressed using sphygmomanometer cuff times per day, for 5 days following alcohol administration. Measures: mean number of BrdU-positive cells in dentate gyrus was observed via immunohistochemistry. Results : Compression stimulation application significantly increased the number of BrdU-positive cells in the dentate gyrus. Also, treatment with alcohol for 3 days inhibited cell proliferation, and compression stimulation application alleviated alcohol-induced inhibition of new cell formation. Conclusion : These results suggest the possibility that compression stimulation application may help in improvement following alcohol-induced brain damaged.

  • PDF

해양심층수의 해마신경세포 연접형성 촉진 효과 (Promotion of Synaptic Maturation by Deep Seawater in Cultured Rat Hippocampal Neurons)

  • 김성호;이현숙;손윤희;남경수;문일수
    • 생명과학회지
    • /
    • 제18권11호
    • /
    • pp.1479-1484
    • /
    • 2008
  • 해양심층수(deep seawater, DSW)는 청정성, 풍부한 무기물질 및 필수미량원소의 함유로 음료를 포함한 여러 분야에 응용하기 위하여 최근 많은 관심을 받고 있다. 본 연구실에서는 동해 양양 부근의 해저 1,100 m에서 취수하여 역삼투압 시스템으로 탈염과 농축을 한 심층수가 경도 600-1,000에서 배양한 흰쥐해마신경세포의 형태적 분화에 도움을 줌을 보고한 바 있다. 좀 더 구체적인 영향을 조사하기 위하여 본 연구에서는 경도 800 및 1,000 심층수가 25%(v/v) 포함된 minimal essential media에서 배양한 해마신경세포에서의 연접형성을 대조군(증류수 첨가)과 비교하였다. 경도 800 및 1000에서 자란 신경세포는 흥분성 연접후세포막의 신호전달복합체인 NRC/MASC 크러스터의 형성을 촉진하였다. 또한 연접전/후 구조가 밀접히 짝을 이룬 연접이 매우 현저히(p<0.01) 증가하였다. 이 결과는 심층수가 연접의 형성을 촉진하여 신경세포의 건강에 도움을 주는 것으로 해석된다.

Gene repressive mechanisms in the mouse brain involved in memory formation

  • Yu, Nam-Kyung;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • 제49권4호
    • /
    • pp.199-200
    • /
    • 2016
  • Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls.

Mind Bomb-2 Regulates Hippocampus-dependent Memory Formation and Synaptic Plasticity

  • Kim, Somi;Kim, TaeHyun;Lee, Hye-Ryeon;Kong, Young-Yun;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.515-522
    • /
    • 2015
  • Notch signaling is a key regulator of neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-2 (Mib2) is an essential positive regulator of the Notch pathway, which acts in the Notch signal-sending cells. Therefore, genetic deletion of Mib2 in the mouse brain might help understand Notch signaling-mediated cell-cell interactions between neurons and their physiological function. Here we show that deletion of Mib2 in the mouse brain results in impaired hippocampal spatial memory and contextual fear memory. Accordingly, we found impaired hippocampal synaptic plasticity in Mib2 knock-out (KO) mice; however, basal synaptic transmission did not change at the Schaffer collateral-CA1 synapses. Using western blot analysis, we found that the level of cleaved Notch1 was lower in Mib2 KO mice than in wild type (WT) littermates after mild foot shock. Taken together, these data suggest that Mib2 plays a critical role in synaptic plasticity and spatial memory through the Notch signaling pathway.

The Non-Canonical Effect of N-Acetyl-D-Glucosamine Kinase on the Formation of Neuronal Dendrites

  • Lee, HyunSook;Cho, Sun-Jung;Moon, Il Soo
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.248-256
    • /
    • 2014
  • N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is a N-acetylhexosamine kinase that belong to the sugar kinase/heat shock protein 70/actin superfamily. In this study, we investigated both the expression and function of NAGK in neurons. Immunohistochemistry of rat brain sections showed that NAGK was expressed at high levels in neurons but at low levels in astrocytes. Immunocytochemistry of rat hippocampal dissociate cultures confirmed these findings and showed that NAGK was also expressed at low levels in oligodendrocytes. Furthermore, several NAGK clusters were observed in the nucleoplasm of both neuron and glia. The overexpression of EGFP- or RFP (DsRed2)-tagged NAGK in rat hippocampal neurons (DIV 5-9) increased the complexity of dendritic architecture by increasing the numbers of primary dendrites and dendritic branches. In contrast, knockdown of NAGK by shRNA resulted in dendrite degeneration, and this was prevented by the co-expression of RFP-tagged NAGK. These results suggest that the upregulation of dendritic complexity is a non-canonical function of NAGK.

Induction of Neuron-derived Orphan Receptor-1 in the Dentate Gyrus of the Hippocampal Formation Following Transient Global Ischemia in the Rat

  • Kim, Younghwa;Hong, Soontaek;Noh, Mi Ra;Kim, Soo Young;Huh, Pil Woo;Park, Sun-Hwa;Sun, Woong;Kim, Hyun
    • Molecules and Cells
    • /
    • 제22권1호
    • /
    • pp.8-12
    • /
    • 2006
  • Neuron-derived orphan receptor (NOR-1) is a member of the thyroid/steroid receptor superfamily that was originally identified in forebrain neuronal cells undergoing apoptosis. In addition to apoptotic stimuli, activation of several signal transduction pathways including direct neuronal depolarization regulates the expression of NOR-1. In this study we tested whether the expression of NOR-1 is changed following transient ischemic injury in the adult rat brain. NOR-1 mRNA increased rapidly in the dentate gyrus of the hippocampal formation and piriform cortex 3 h after transient global ischemia and returned to basal level at 6 h. On the other hand, oxygen-glucose deprivation of cultured cerebral cortical neurons did not alter the expression of NOR-1. These results suggest that expression of NOR-1 is differentially regulated in different brain regions in response to globally applied brain ischemia, but that hypoxia is not sufficient to induce its expression.

남생이(Geoclemys reevesii) 대뇌에 있어서 raf Protein Kinase의 면역세포화학적 분포 (Immunocytochemical Localization Qf raf Protein Kinase in Cerebrum of Geoclemys reevesii (Gray))

  • 최원철;문현근
    • 한국동물학회지
    • /
    • 제33권2호
    • /
    • pp.141-151
    • /
    • 1990
  • Raf protein kinases and protein kinase C는 세포질내 serine/threonine-specific protein에 속한다. 그리고 기능적인 구조와 세포내의 분포 양상은 서로 비슷하다. Raf family oncogene를 발현시키는 a-raf와 c-raf protein kinase에 대한 antibodies로써 남생이 대뇌의 raf protein kinase의 분포를 조사하였다. 일반적으로 raf protein kinase는 제한된 지역에서 즉,general pallium,hippocampal formation, pdmordiuin hippocampi,nucleus of lateral olfactory tract, basal amygdaloid nucleus와bed of stria terminalis에 나타났으며, c-raf protein kinase의 면역학적 labeling은 a-raf보다 그 범위가 넓었다. 그렇지만 labeling되는 intensity는 오히려 a-raf보다 낮았다. 그런데 a-raf에서 가장 명확한 좋은 예는 basal amygdaloid nucleus내의 구형모양의 세포인데, 이 세포는 세포질이 매우 강하게 labeling되어 지므로 ring모양과 같이 나타났다. 특히 c-raf는 protein kinase C 가 많이 나타나는 pyramidal 세포나 Purkinje세포에 많이 존재하는 것을 볼 때 protein kinase에 의하여 활성화되는 myc와 서로 상협작용을 유도한다고 제안하는 바이다.

  • PDF

Protein tyrosine phosphatase PTPRT as a regulator of synaptic formation and neuronal development

  • Lee, Jae-Ran
    • BMB Reports
    • /
    • 제48권5호
    • /
    • pp.249-255
    • /
    • 2015
  • PTPRT/RPTPρ is the most recently isolated member of the type IIB receptor-type protein tyrosine phosphatase family and its expression is restricted to the nervous system. PTPRT plays a critical role in regulation of synaptic formation and neuronal development. When PTPRT was overexpressed in hippocampal neurons, synaptic formation and dendritic arborization were induced. On the other hand, knockdown of PTPRT decreased neuronal transmission and attenuated neuronal development. PTPRT strengthened neuronal synapses by forming homophilic trans dimers with each other and heterophilic cis complexes with neuronal adhesion molecules. Fyn tyrosine kinase regulated PTPRT activity through phosphorylation of tyrosine 912 within the membrane-proximal catalytic domain of PTPRT. Phosphorylation induced homophilic cis dimerization of PTPRT and resulted in the inhibition of phosphatase activity. BCR-Rac1 GAP and Syntaxin-binding protein were found as new endogenous substrates of PTPRT in rat brain. PTPRT induced polymerization of actin cytoskeleton that determined the morphologies of dendrites and spines by inhibiting BCR-Rac1 GAP activity. Additionally, PTPRT appeared to regulate neurotransmitter release through reinforcement of interactions between Syntaxin-binding protein and Syntaxin, a SNARE protein. In conclusion, PTPRT regulates synaptic function and neuronal development through interactions with neuronal adhesion molecules and the dephosphorylation of synaptic molecules. [BMB Reports 2015; 48(5): 249-255]

Effects of Saccharin Intake on Hippocampal and Cortical Plasticity in Juvenile and Adolescent Rats

  • Park, Jong-Sil;Yoo, Sang-Bae;Kim, Jin-Young;Lee, Sung-Joong;Oh, Seog-Bae;Kim, Joong-Soo;Lee, Jong-Ho;Park, Kyung-Pyo;Jahng, Jeong-Won;Choi, Se-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권2호
    • /
    • pp.113-118
    • /
    • 2010
  • The sensory system is developed and optimized by experiences given in the early phase of life in association with other regions of the nervous system. To date, many studies have revealed that deprivation of specific sensory experiences can modify the structure and function of the central nervous system; however, the effects of sensory overload remains unclear. Here we studied the effect of overloading the taste sense in the early period of life on the synaptic plasticity of rat hippocampus and somatosensory cortex. We prepared male and female Sprague Dawley rats with ad libitum access to a 0.1% saccharin solution for 2 hrs per day for three weeks after weaning on postnatal day 22. Saccharin consumption was slightly increased in males compared with females; however, saccharin intake did not affect chow intake or weight gain either in male or in female rats. We examined the effect of saccharin-intake on long term potentiation (LTP) formation in hippocampal Schaffer collateral pathway and somatosensory cortex layer IV - II/III pathways in the 6-week old saccharin-fed rats. There was no significant difference in LTP formation in the hippocampus between the control group and saccharin-treated group in both male and female rats. Also in the somatosensory cortex, we did not see a significant difference in LTP among the groups. Therefore, we conclude that saccharin-intake during 3~6 weeks may not affect the development of physiological function of the cortical and hippocampal synapses in rats.