• 제목/요약/키워드: hippocampal cell

검색결과 241건 처리시간 0.028초

Virtual Screening and Testing of GSK-3 Inhibitors Using Human SH-SY5Y Cells Expressing Tau Folding Reporter and Mouse Hippocampal Primary Culture under Tau Cytotoxicity

  • Chih-Hsin Lin;Yu-Shao Hsieh;Ying-Chieh Sun;Wun-Han Huang;Shu-Ling Chen;Zheng-Kui Weng;Te-Hsien Lin;Yih-Ru Wu;Kuo-Hsuan Chang;Hei-Jen Huang;Guan-Chiun Lee;Hsiu Mei Hsieh-Li;Guey-Jen Lee-Chen
    • Biomolecules & Therapeutics
    • /
    • 제31권1호
    • /
    • pp.127-138
    • /
    • 2023
  • Glycogen synthase kinase-3β (GSK-3β) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3β from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3β activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3β Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogenactivated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/ Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3β kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.

The Downregulation of Somatic A-Type $K^+$ Channels Requires the Activation of Synaptic NMDA Receptors in Young Hippocampal Neurons of Rats

  • Kang, Moon-Seok;Yang, Yoon-Sil;Kim, Seon-Hee;Park, Joo-Min;Eun, Su-Yong;Jung, Sung-Cherl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권2호
    • /
    • pp.135-141
    • /
    • 2014
  • The downregulation of A-type $K^+$ channels ($I_A$ channels) accompanying enhanced somatic excitability can mediate epileptogenic conditions in mammalian central nervous system. As $I_A$ channels are dominantly targeted by dendritic and postsynaptic processings during synaptic plasticity, it is presumable that they may act as cellular linkers between synaptic responses and somatic processings under various excitable conditions. In the present study, we electrophysiologically tested if the downregulation of somatic $I_A$ channels was sensitive to synaptic activities in young hippocampal neurons. In primarily cultured hippocampal neurons (DIV 6~9), the peak of $I_A$ recorded by a whole-cell patch was significantly reduced by high KCl or exogenous glutamate treatment to enhance synaptic activities. However, the pretreatment of MK801 to block synaptic NMDA receptors abolished the glutamate-induced reduction of the $I_A$ peak, indicating the necessity of synaptic activation for the reduction of somatic $I_A$. This was again confirmed by glycine treatment, showing a significant reduction of the somatic $I_A$ peak. Additionally, the gating property of $I_A$ channels was also sensitive to the activation of synaptic NMDA receptors, showing the hyperpolarizing shift in inactivation kinetics. These results suggest that synaptic LTP possibly potentiates somatic excitability via downregulating $I_A$ channels in expression and gating kinetics. The consequential changes of somatic excitability following the activity-dependent modulation of synaptic responses may be a series of processings for neuronal functions to determine outputs in memory mechanisms or pathogenic conditions.

Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus

  • Kim, Ju Hwan;Sohn, Uy Dong;Kim, Hyung-Gun;Kim, Hak Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권3호
    • /
    • pp.277-289
    • /
    • 2018
  • The exponential increase in the use of mobile communication has triggered public concerns about the potential adverse effects of radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones on the central nervous system (CNS). In this study, we explored the relationship between calcium channels and apoptosis or autophagy in the hippocampus of C57BL/6 mice after RF-EMF exposure with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Firstly, the expression level of voltage-gated calcium channels (VGCCs), a key regulator of the entry of calcium ions into the cell, was confirmed by immunoblots. We investigated and confirmed that pan-calcium channel expression in hippocampal neurons were significantly decreased after exposure to RF-EMF. With the observed accumulation of autolysosomes in hippocampal neurons via TEM, the expressions of autophagy-related genes and proteins (e.g., LC3B-II) had significantly increased. However, down-regulation of the apoptotic pathway may contribute to the decrease in calcium channel expression, and thus lower levels of calcium in hippocampal neurons. These results suggested that exposure of RF-EMF could alter intracellular calcium homeostasis by decreasing calcium channel expression in the hippocampus; presumably by activating the autophagy pathway, while inhibiting apoptotic regulation as an adaptation process for 835 MHz RF-EMF exposure.

Paeoniflorin ameliorates neuropathic pain-induced depression-like behaviors in mice by inhibiting hippocampal neuroinflammation activated via TLR4/NF-κB pathway

  • Bai, Hualei;Chen, Shize;Yuan, Tiezheng;Xu, Dongyuan;Cui, Songbiao;Li, Xiangdan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.217-225
    • /
    • 2021
  • Neuropathic pain (NP) that contributes to the comorbidity between pain and depression is a clinical dilemma. Neuroinflammatory responses are known to have potentially important roles in the initiation of NP and depressive mood. In this study, we aimed to investigate the effects of paeoniflorin (PF) on NP-induced depression-like behaviors by targeting the hippocampal neuroinflammation through the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. We used a murine model of NP caused by unilateral sciatic nerve cuffing (Cuff). PF was injected intraperitoneally once a day for a total of 14 days. Pain and depression-like behavior changes were evaluated via behavioral tests. Pathological changes in the hippocampus of mice were observed by H&E staining. The levels of proinflammatory cytokines in the hippocampus were detected using ELISA. Activated microglia were measured by immunohistochemical staining. The TLR4/NF-κB signaling pathway-associated protein expression in the hippocampus was detected by western blotting. We found that the PF could significantly alleviate Cuff-induced hyperalgesia and depressive behaviors, lessen the pathological damage to the hippocampal cell, reduce proinflammatory cytokines levels, and inhibit microglial over-activation. Furthermore, PF downregulated the expression levels of TLR4/NF-κB signaling pathway-related proteins in the hippocampus. These results indicate that PF is an effective drug for improving the comorbidity between NP and depression.

Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated C57BL/6J mice via upregulation of Nrf2-mediated antioxidant mechanism

  • Ju, Sunghee;Seo, Ji Yeon;Lee, Seung Kwon;Oh, Jisun;Kim, Jong-Sang
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.108-118
    • /
    • 2021
  • Background: Korean ginseng (Panax ginseng Meyer) contains a variety of ginsenosides that can be metabolized to a biologically active substance, compound K. Previous research showed that compound K could be enriched in the red ginseng extract (RGE) after hydrolysis by pectinase. The current study investigated whether the enzymatically hydrolyzed red ginseng extract (HRGE) containing a notable level of compound K has cognitive improving and neuroprotective effects. Methods: A scopolamine-induced hypomnesic mouse model was subjected to behavioral tasks, such as the Y-maze, passive avoidance, and the Morris water maze tests. After sacrificing the mice, the brains were collected, histologically examined (hematoxylin and eosin staining), and the expressions of antioxidant proteins analyzed by western blot. Results: Behavioral assessment indicated that the oral administration of HRGE at a dosage of 300 mg/kg body weight reversed scopolamine-induced learning and memory deficits. Histological examination demonstrated that the hippocampal damage observed in scopolamine-treated mouse brains was reduced by HRGE administration. In addition, HRGE administration increased the expression of nuclear-factor-E2-related factor 2 and its downstream antioxidant enzymes NAD(P)H:quinone oxidoreductase and heme oxygenase-1 in hippocampal tissue homogenates. An in vitro assay using HT22 mouse hippocampal neuronal cells demonstrated that HRGE treatment attenuated glutamate-induced cytotoxicity by decreasing the intracellular levels of reactive oxygen species. Conclusion: These findings suggest that HRGE administration can effectively alleviate hippocampus-mediated cognitive impairment, possibly through cytoprotective mechanisms, preventing oxidative-stress-induced neuronal cell death via the upregulation of phase 2 antioxidant molecules.

Forebrain glutamatergic neuron-specific Ctcf deletion induces reactive microgliosis and astrogliosis with neuronal loss in adult mouse hippocampus

  • Kwak, Ji-Hye;Lee, Kyungmin
    • BMB Reports
    • /
    • 제54권6호
    • /
    • pp.317-322
    • /
    • 2021
  • CCCTC-binding factor (CTCF), a zinc finger protein, is a transcription factor and regulator of chromatin structure. Forebrain excitatory neuron-specific CTCF deficiency contributes to inflammation via enhanced transcription of inflammation-related genes in the cortex and hippocampus. However, little is known about the long-term effect of CTCF deficiency on postnatal neurons, astrocytes, or microglia in the hippocampus of adult mice. To address this, we knocked out the Ctcf gene in forebrain glutamatergic neurons (Ctcf cKO) by crossing Ctcf-floxed mice with Camk2a-Cre mice and examined the hippocampi of 7.5-10-month-old male mice using immunofluorescence microscopy. We found obvious neuronal cell death and reactive gliosis in the hippocampal cornu ammonis (CA)1 in 7.5-10-month-old cKO mice. Prominent rod-shaped microglia that participate in immune surveillance were observed in the stratum pyramidale and radiatum layer, indicating a potential increase in inflammatory mediators released by hippocampal neurons. Although neuronal loss was not observed in CA3, and dentate gyrus (DG) CTCF depletion induced a significant increase in the number of microglia in the stratum oriens of CA3 and reactive microgliosis and astrogliosis in the molecular layer and hilus of the DG in 7.5-10-month-old cKO mice. These results suggest that long-term Ctcf deletion from forebrain excitatory neurons may contribute to reactive gliosis induced by neuronal damage and consequent neuronal loss in the hippocampal CA1, DG, and CA3 in sequence over 7 months of age.

HT22 신경세포에서 금은화 추출물에 의한 글루타메이트 유도 산화적 스트레스 및 세포사멸 억제 효과 (Inhibitory Effect of Lonicera japonica Thunb. Flower Buds against Glutamate-Induced Cytotoxicity in HT22 Hippocampal Neurons)

  • 전창환;송춘호
    • Korean Journal of Acupuncture
    • /
    • 제38권1호
    • /
    • pp.32-42
    • /
    • 2021
  • Objectives : In this study, we investigated the neuroprotective effects of ethanol extract of Lonicera japonica flower buds (EELJ) on glutamate-induced neurotoxicity in mouse hippocampus-derived neuronal HT22 cells. Methods : After analyzing the cytoprotective effect of EELJ on glutamate in HT22 cells, the inhibitory effect of apoptosis was studied using flow cytometry. In order to analyze the antioxidant efficacy of EELJ, the levels of reactive oxygen species (ROS) and glutathione (GSH) were investigated, and the effects on the activities of superoxide dismutase (SOD) and catalase (CAT) were also analyzed. Furthermore, the effect of EELJ on the expression of apoptosis regulators such as Bax and Bcl-2 in glutamate-treated HT22 cells was investigated. Results : According the current results, pretreatment with EELJ significantly reduced glutamate-induced loss of cell viability and release of lactate dehydrogenase. EELJ also markedly attenuated glutamate-induced generation of intracellular ROS, which was associated with increased levels of GSH, and activity of SOD and CAT in glutamate-stimulated HT22 cells. In addition, EELJ was strikingly inhibited glutamate-induced apoptosis in HT22 cells. Furthermore, the expression of pro-apoptotic Bax was increased and the expression of anti-apoptotic Bcl-2 was decreased in glutamate-treated HT22 cells, while in the presence of EELJ, their expressions were maintained at the control levels. Conclusions : These findings indicate that EELJ protects glutamate-induced cytotoxicity in HT22 hippocampal neurons through antioxidant activity. Therefore, although identification of biologically active substances of EELJ and re-evaluation through animal experiments is necessary, this natural substance is a promising candidate for further research in preventing and treating oxidative stress-mediated neurodegenerative diseases.

OXIDANT-INDUCED NEUROTOXICITY WAS BLOCKED BY ANTIOXIDANTS AND METAL CHELATORS IN MOUSE CEREBRAL NEURON CULTURES

  • Park, S.T.;H.Y. Yoon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.89-89
    • /
    • 2002
  • It is well known that oxygen radicals induce neuronal cell damage by initiation of lipid peroxidation chain reaction. Recent work has been also demonstrated that enzymatically generated free radicals cause the release of glutamate and aspartate from cultured rat hippocampal slices.(omitted)

  • PDF

마치현 에틸아세테이트 분획물의 뇌세포 보호효과 (Neuroprotective Effect of Ethyl Acetate Fraction of Portulaca oleracea L.)

  • 임남경;정길생
    • 생약학회지
    • /
    • 제44권4호
    • /
    • pp.379-383
    • /
    • 2013
  • Portulaca oleracea L. is known to have many biological benefits such as anti-oxidant, anti-inflammatory, anti-allergic and anti-tumor. The objective of this study is to explore the neuroprotective effect of P. oleracea L. against glutamate-induced oxidative stress in mouse hippocampal HT22 cells. P. oleracea L. 70% ethanol extract and solvent fractions have the potent neroprotective effects on glutamate-induced nerotoxicity by induced the expression of heme oxygenase (HO)-1 in HT22 cells. Especially, ethyl acetate fraction showed higher protective effect. In HT22 cell, P. oleracea L. treatment with ERK inhibitor (PD98059) and c-JUN N-terminal kinase (JNK) inhibitor (SP600125) reduced P. oleracea L. ethyl acetate fraction induced HO-1 expression and P. oleracea L. ethyl acetate fraction also increased ERK and JNK phosphorylation. Furthermore, we found that treatment of P. oleracea L. caused the nuclear accumulation of Nrf2. In conclusion, the ethyl acetate fraction of 70% ethanol extract of P. oleracea L. significantly protect glutamate-induced oxidative damage by induction of HO-1 via Nrf2, ERK and JNK pathway in mouse hippocampal HT22. Taken together these finding suggest that P. oleracea L. ethyl acetate fraction is good source for taking active compounds and may be a potential therapeutic agent for brain disorder that induced by oxidative stress and neuronal damage.

물푸레나무 수피의 생쥐 해마 유래 HT22 세포 보호와 항산화 활성 물질 (Cytoprotective Constituents of the Stem Barks of Fraxinus rhynchophylla on Mouse Hippocampal HT22 Cells and Their Antioxidative Activity)

  • 정길생;윤권하;김현철;오승환;김명중;강대길;이호섭;김윤철
    • 생약학회지
    • /
    • 제38권3호통권150호
    • /
    • pp.287-290
    • /
    • 2007
  • Phytochemical investigation of the MeOH extract of the dried stem barks of Fraxinus rhynchophylla Hance (Oleaceae), as guided by cytoprotective activity against tert-butyl hydroperoxide (t-BHP)-induced cell injury in mouse hippocampal HT22 cells, furnished two coumarins, esculetin (1) and fraxetin (2). Compounds 1 and 2 had the significant cytoprotective effects on t-BHP-induced cellular oxidative injury in HT22 cells. Furthermore, compounds 1 and 2 showed potent DPPH radical scavenging effect, exhibiting $IC_{50}$ values of 14.68 and 9.64 ${\mu}M$, respectively.