• Title/Summary/Keyword: hinges

Search Result 354, Processing Time 0.02 seconds

Some Tertiary Interactions in 5S rRNA from Xanthomonas celebensis (Xanthomonas celebensis 5S rRNA의 몇 가지 삼차상호작용)

  • Bongrae Cho;Yeonghoon Lee;Myung-Un Choi;Inwon Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.237-243
    • /
    • 1993
  • The primary and secondary structure of the 5S rRNA isolated from Xanthomonas celebensis were determined by enzymatic and chemical degradation methods. It consists of 119 nucleotides and contains no modified nucleosides. As with the 5S rRNAs of X. maltophilia and X. citri, it contains an additional uridine residue on the 5'-terminus. Its secondary structure was almost identical to the models previously proposed by us for the 5S rRNA of two Xanthomonas species. Its secondary structure consists of five helices, five loops and two bulges. The tertiary interactions in the 5S rRNA molecule were analyzed by Fe(II)-EDTA treatment and hybridization method using deoxyhexamer. From the fact that some adenine residues in loop M, region $I_1-C$, loop $H_1$, and loop $H_2$ become susceptible to diethylpyrocarbonate when the 5S rRNA was hybridized with deoxyhexamer complementary to the sequence $U_{35}CCCAU_{40}$ and that some nucleotide residues in loop M, loop $H_1$ and region $D-I_2$ become resistant Fe(II)-EDTA cleavage in the presence of $Mg^{2+}$, it is presumed that loops $H_1$ and $H_2$ interact with loop M in some way. In the tertiary interaction, the regions $I_1-C$ and $D-I_2$ seem to act as hinges in folding the stems $B-I_1-C$ and $D-I_2-E.$ It was found that loop $H_1$ changes into a smaller loop of three bases by forming noncanonical A : C base-pairs ih acidic environment.

  • PDF

Sturctural Geometry of the Pyeongchang-Jeongseon Area of the Northwestern Taebaeksan Zone, Okcheon Belt (옥천대 북서부 태백산지역 평창-정선일대 지질구조의 기하학적 형태 해석)

  • Jang, Yirang;Cheong, Hee Jun
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.541-554
    • /
    • 2019
  • The Taebaeksan Zone of the Okcheon Belt is a prominent fold-thrust belt, preserving evidence for overlapped polyphase and diachronous orogenic events during crustal evolution of the Korean Peninsula. The Pyeongchang-Jeongseon area of the northwestern Taebaeksan Zone is fault-bounded on the western Jucheon and southern Yeongwol areas, showing lateral variations in stratigraphy and structural geometries. For better understanding these geological characteristics of the northwestern Taebaeksan Zone, we have studied the structural geometry of the Pyeongchang-Jeongseon area. For this, we have firstly carried out the SHRIMP U-Pb age analysis of the age-unknown sedimentary rock to clarify stratigraphy for structural interpretation. The results show the late Carboniferous to middle Permian dates, indicating that it is correlated to the Upper Paleozoic Pyeongan Supergroup. In addition to this, we interpreted the geometric relationships between structural elements from the detailed field investigation of the study area. The major structure of the northwestern Taebaeksan Zone is the regional-scale Jeongseon Great syncline, having NE-trending hinge with second-order folds such as the Jidongri and Imhari anticlines and the Nambyeongsan syncline. Based on the stereographic and down-plunge projections of the structureal elements, the structural geometry of the Jeongseon Great syncline can be interpreted as a synformal culmination, plunging slightly to the south at its southern area, and north at the northern area. The different map patterns of the northern and southern parts of the study area should be resulted in different erosion levels caused by the plunging hinges. Considering the Jeongseon Great syncline is the major structure that constrains the distribution of the Paleozoic strata of the Pyeongchang and Jeongseon areas, the symmetric repetition of the lower Paleozoic Joseon Supergroup in both limbs should be re-examined by structural mapping of the Hangmae and Hoedongri formations in the Pyeongchang and Jeongseon areas.

Ventilation Effect of the Greenhouse with Folding Panel Type Windows (패널굴절방식 환기창 온실의 환기효과)

  • Kim, Jin-Young;Lee, Si-Young;Kim, Hyun-Hwan;Chun, Hee;Yun, In-Hak
    • Journal of Bio-Environment Control
    • /
    • v.11 no.1
    • /
    • pp.5-11
    • /
    • 2002
  • In this study, new development of natural ventilation window was accomplished to control environment of greenhouse with no use of farced ventilation during hot season. The ventilation effect of developed ventilation window was investigated in experimental greenhouse which was designed using side wall panel and folding type panel fur natural ventilation. Folding panel type ventilation window was designed to open upper part of the side wall and top of the roof using two hinges which are located bottom of the side wall and the roof panel to grab one side of each panels and guide the other side along with the guidance rail. Developed ventilation window has top ventilation part with maximum moving distance X=ι (1-cos$\theta$)=848.5 mm and side ventilation part with maximum moving distance Y=ι/2 $\times$sin$\theta$=1,184.4 mm at 45$^{\circ}$ of theoretical opening angle. It took 4.5 minutes to open roof vent fully and temperature at 1.2 and 0.8 m height decreased after 1 minute from starting opening and became equilibrium state maintaining 3-4$^{\circ}C$ difference after 2 minutes from complete opening. Air exchange rate was 15.2~39.3 h$^{-1}$ which was more than 10~15 h$^{-1}$ of continuous type and Venlo type greenhouse. The descent effect of temperature by ventilation windows was two times higher than Venlo type greenhouse.

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.