• 제목/요약/키워드: hinge moment

검색결과 178건 처리시간 0.022초

Sensitivity analysis of the plastic hinge region in the wall pier of reinforced concrete bridges

  • Babaei, Ali;Mortezaei, Alireza;Salehian, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.675-687
    • /
    • 2019
  • As the bridges are an integral part of the transportation network, their function as one of the most important vital arteries during an earthquake is fundamental. In a design point of view, the bridges piers, and in particular the wall piers, are considered as effective structural elements in the seismic response of bridge structures due to their cantilever performance. Owing to reduced seismic load during design procedure, the response of these structural components should be ductile. This ductile behavior has a direct and decisive correlation to the development of plastic hinge region at the base of the wall pier. Several international seismic design codes and guidelines have suggested special detailing to assure ductile response in this region. In this paper, the parameters which affect the length of plastic hinge region in the reinforced concrete bridge with wall piers were examined and the sensitivity of these parameters was evaluated on the length of the plastic hinge region. Sensitivity analysis was accomplished by independently variable parameters with one standard deviation away from their means. For this aim, the Monte Carlo simulation, tornado diagram analysis, and first order second moment method were used to determine the uncertainties associated with analysis parameters. The results showed that, among the considered design variables, the aspect ratio of the pier wall (length to width ratio) and axial load level were the most important design parameters in the plastic hinge region, while the yield strength of transverse reinforcements had the least effect on determining the length of this region.

Influence of steel-concrete interaction in dissipative zones of frames: II - Numerical study

  • Danku, Gelu;Dubina, Dan;Ciutina, Adrian
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.323-342
    • /
    • 2013
  • In the case of seismic-resistant composite dual moment resisting and eccentrically braced frames, the current design practice is to avoid the disposition of shear connectors in the expected plastic zones, and consequently to consider a symmetric moment or shear plastic hinges, which occur only in the steel beam or link. Even without connectors, the real behavior of the hinge may be different from the symmetric assumption since the reinforced concrete slab is connected to the steel element close to the hinge locations, and also due to contact friction between the concrete slab and the steel element. At a larger level, the structural response in the case of important seismic motions depends directly on the elasto-plastic behavior of elements and hinges. The numerical investigation presented in this study summarizes the results of elasto-plastic analyses of several steel frames, considering the interaction of the steel beam with the concrete slab. Several parameters, such as the inter-story drift, plastic rotation requirements and behavior factors q were monitored. In order to obtain accurate results, adequate models of plastic hinges are proposed for both the composite short link and composite reduced beam sections.

철근콘크리트 보통모멘트 골조형식 학교건축물의 내전성능 향상 방안 연구 (A Study on the Methods of Enhancing the Seismic Performance for Reinforced Concrete School Buildings - Ordinary Moment Frame)

  • 김현진;이상현
    • 한국안전학회지
    • /
    • 제24권4호
    • /
    • pp.74-81
    • /
    • 2009
  • In this study, the seismic performance of RC school buildings which were not designed according to earthquake-resistance design code were evaluated by using response spectrum and push-over analyses. The torsional amplification effect due to plan irregularity is considered and then the efficiency of seismic retrofitting methods such as RC shear wall, steel frame, RC frame and PC wing wall was investigated. The analysis result indicate that the inter-story drift concentrated in the first floor and most plastic hinge forms at the column of the first story. Among the retrofitting methods, the PC wing wall has the highest seismic performance in strength and story drift aspect. Especially, it can make building ductile behavior due to the concentrated inter-story drift at the first column hinge is distributed overall stories. The axial force, shear force and moment magnitude of existing elements significantly decreased after retrofitting. However, the axial and shear force of the elements connected to the additional retrofitting elements increased, and especially the boundary columns at the end of the retrofitting shear wall should be reinforced for assuring the enhancement of seismic performance.

Experimental study on innovative tubular web RBS connections in steel MRFs with typical shallow beams

  • Saleh, Aboozar;Zahrai, Seyed M.;Mirghaderi, Seyed R.
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.785-808
    • /
    • 2016
  • An innovative Reduced Beam Section (RBS) connection, called Tubular Web RBS connection (TW-RBS), has been recently introduced and its performance has been numerically investigated in some earlier studies. The TW-RBS connection is a kind of accordion-web RBS connection in which part of the flat web of the beam is replaced by a steel tube at the expected region of the plastic hinge. This paper presents experimental results of three TW-RBS connections under cyclic loading. Obtained results indicated that TW-RBS reduces contribution of the beam web to the whole moment strength and creates a ductile fuse far from components of the beam-to-column connection. Besides, TW-RBS connection can increase story drift capacity up to 9% in the case of shallow beams which is much more than those stipulated by the current seismic codes. Based on the experimental results, the tubular web in the plastic hinge region improves lateral-torsional buckling stability of the beam such that only local buckling of the beam flange at the center of the reduced section was observed during the tests. In order to achieve a better understanding, behavior of all TW-RBS specimens are also numerically investigated and compared with those of experimental results.

Tubular Web Reduced Beam Section (TW-RBS) connection, a numerical and experimental study and result comparison

  • Zahrai, Seyed M.;Mirghaderi, Seyed R.;Saleh, Aboozar
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.571-583
    • /
    • 2017
  • A kind of accordion-web RBS connection, "Tubular Web RBS (TW-RBS)" connection is proposed in this research. TW-RBS is made by replacing a part of web with a tube at the desirable location of the beam plastic hinge. This paper presents first a numerical study under cyclic load using ABAQUS finite element software. A test specimen is used for calibration and comparison of numerical results. Obtained results indicated that TW-RBS would reduce contribution of the beam web to the whole moment strength and creates a ductile fuse far from components of the beam-to-column connection. Besides, TW-RBS connection can increase story drift capacity up to 9% in the case of shallow beams which is much more than those stipulated by the current seismic codes. Furthermore, the tubular web like corrugated sheet can improve both the out-of-plane stiffness of the beam longitudinal axis and the flange stability condition due to the smaller width to thickness ratio of the beam flange in the plastic hinge region. Thus, the tubular web in the plastic hinge region improves lateral-torsional buckling stability of the beam as just local buckling of the beam flange at the center of the reduced section was observed during the tests. Also change of direction of strain in arc shape of the tubular web section is smaller than the accordion webs with sharp corners therefore the tubular web provides a better condition in terms of low-cycle fatigue than other accordion web with sharp corners.

Strengthening of concrete structures with buckling braces and buckling restrained braces

  • Mazloom, Moosa;Pourhaji, Pardis;Farash, Abbas Moosa;Sanati, Amir Hossein
    • Structural Monitoring and Maintenance
    • /
    • 제5권3호
    • /
    • pp.391-416
    • /
    • 2018
  • The purpose of this article is to strengthen concrete structures using buckling and non-buckling braces. Connection plates are modeled in three shapes including the effect of 1.5t hinge zone length, 2t one and without the zone (1.5t-CP, 2t-CP and WCP). According to the verification performed with ABAQUS software, the connection plates which are superior in ductility and strengthening are found. The results show adding steel braces in concrete moment frames increase the strength and stiffness of the structures up to about 12 and 3 times, respectively. The frame strength increased about 21 and 25 percent with considering the effect of 2t hinge length in connection plates compared to 1.5t-CPs and WCPs. Also the ductility of retrofitted frames with 2t-CP improved 2.06 times more than WCP ones. Thus, 2t-CP sample is the best choice for connecting steel braces to concrete moment frames for retrofitting them. Afterwards, optimum conditions for elemental coating in braces with no buckling are assessed. The length of concrete coatings could be reduced about 30 percent, and buckling did not occur. Therefore, the weight of restraining coating decreased, and its performance improved. It is worth noting that BRBs could be constructed with only steel materials, which have outer steel tubes too. In fact, only the square cross sections of the tube profiles are appropriate for removing the filler concrete, and the rectangular ones are prone to buckle around their weak axis.

비선형 지진 해석을 위한 보-기둥 요소 (Beam-Column Element Applicable to Nonlinear Seismic Analysis)

  • 김기동;고만기;이상수
    • 한국강구조학회 논문집
    • /
    • 제9권4호통권33호
    • /
    • pp.557-578
    • /
    • 1997
  • 이 연구의 목적은 매우 큰 지진하에 휨 모멘트에 의해서만 항복하는 부재와 휨 모멘트와 축 방향력에 의하여 항복하는 부재를 모델 할 수 있는 보-기둥 요소를 개발하는데 있다. 이 요소는 직렬 힌지 모델 (one-component series hinge model)로 간주 될 수 있으며, 축 방향 강성도 변화와 축 방향 소성 변형을 고려 할 수 있고 또한 단조, 주기, 임의 하중 등을 적절히 모델 할 수 있는 경화 법칙 (hardening rules)을 고려한다. 일반적으로 이 요소는 실험 결과 및 화이버 모델 (fiber model)에 비교하여 볼 때 기존의 이직선 힌지 모델 (bilinear hinge model)보다 우수한 거동을 보였고 모멘트 저항 뼈대 구조물의 강 부재의 보-기둥 거동을 적절하게 모델 할 수 있었다. 개발된 보-기둥 요소는 지진 하중하에서 구조물의 전체적인 거동과 설계에 필요한 국부 변형량을 기존의 이직선 힌지 모델 보다 매우 정확하게 예측 할 수 있다.

  • PDF

P-$\Delta$ 효과를 고려한 철골 구조물의 비선형 동적거동 평가 (Evaluation of Nonlinear Dynamic Behavior for Steel Moment Frame Structures Considering P-$\Delta$ Effects)

  • 최원호;이주완;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.235-242
    • /
    • 2001
  • Inelastic seismic response of steel moment frame structures, which are usually quite gravity load and subject to large displacement under severe earthquake, may be severly influenced by the structure P-Δ effects. The P-Δ effect may have an important impact on the dynamic behavior of the structure in the nonlinear seismic analysis. In multi degree of freedom systems P-Δ effects may significantly affect only a subset of stories or a single story alone. Therefore, a story drift amplification of structure is happened by P-Δeffects and such nonlinear dynamic behaviors are very difficult to evaluate in the structures. In this study, two systems having different design methods of steel moment frame structures are investigated to evaluate the P-Δ effects due to gravity load. The plastic hinge formations, maximum rotational ductility demands, and energy distribution will be compared and evaluated following whether the P-Δ effects are considered or not. And design methods are proposed for the prevention of the instability of structures which due to the P-Δ effects.

  • PDF

알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성 (The characteristics of bending collapse of aluminum/GFRP hybrid tube)

  • 송민철;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

Practical design guidlines for semi-continuous composite braced frames

  • Liew, J.Y. Richard;Looi, K.L.;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제1권2호
    • /
    • pp.213-230
    • /
    • 2001
  • This paper presents a simplified approach for the design of semi-continuous composite beams in braced frames, where specific attention is given to the effect of joint rotational stiffness. A simple composite beam model is proposed incorporating the effects of semi-rigid end connections and the nonprismatic properties of a 'cracked' steel-concrete beam. This beam model is extended to a sub-frame in which the restraining effects from the adjoining members are considered. Parametric studies are performed on several sub-frame models and the results are used to show that it is possible to correlate the amount of moment redistribution of semi-continuous beam within the sub-frame using an equivalent stiffness of the connection. Deflection equations are derived for semi-continuous composite beams subjected to various loading and parametric studies on beam vibrations are conducted. The proposed method may be applied using a simple computer or spreadsheet program.