• Title/Summary/Keyword: hinge moment

Search Result 178, Processing Time 0.023 seconds

Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame (깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발)

  • Jung, Si-Hwa;Alemayehe, Robel Wondimu;Park, Man-Woo;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

Softening Analysis of Reinforced Concrete Frames (철근콘크리트 골조의 연성화 해석)

  • 나유성;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.438-443
    • /
    • 1998
  • Softening os the name used for decreasing bending moment at advanced flexural deformation. To accommodate softening deformation in analysis, it is assumed that a hinge has finite length. The softening analysis of R/C frames relies on the primary assumption that softening occurs over a finite hinge length and that the moment-curvature relationship for any section may be closely described by a trilinear approximation. A stiffness matrix for elastic element with softening regions are derived and the stiffness matrix allows extension of the capability of an existing computer program for elastic-plastic analysis to the softening situation. The effect of softening on the collapse load of R/C frame is evaluated.

  • PDF

The Study on Experimental Measurement Method of Hinge Moment Acting on Control Surface of Air Vehicle (비행체 조종면에 작용하는 힌지 모멘트의 시험적 측정 방법 연구)

  • Park, Jong-Min;Chung, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.165-170
    • /
    • 2012
  • This paper contains the test method to obtain aerodynamic hinge moments acting on the control surface of air vehicle wing. During the flight, hinge moments make difference between actual control surface angle and control angle which is measured by sensor of actuator. The hinge moments can be obtained by using this difference. Static ground load test and calibration test were conducted to obtain torsional stiffness of control surface actuation system. This results are used to calculate hinge moments. In addition, the mechanical errors of actuation system such as slip angle of mounting point and backlash could be estimated. Using flight test results, this experimental measurement method of hinge moment acting on control surface is conducted. The results of this method are similar to those of numerical simulation method, and the validity of this method is proved.

The Study of Hinge Moment Measurement in Wind Tunnel Test Using Single Wheatstone Bridge Flexure (단일 휘트스톤 브리지 플렉셔를 이용한 풍동시험에서의 힌지모멘트 측정 연구)

  • Cho, Cheolyoung;Park, Jongho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.476-482
    • /
    • 2016
  • In this study, a method using single Wheatstone bridge flexure has been presented to measure hinge moment acting on control surfaces of wind tunnel models. The structural simplicity of the flexure reduces difficulty regarding gauging and wire-routing, and also makes it feasible to install flexures even inside thin wings. Some flexures were designed and fabricated under typical aerodynamic loads in wind tunnel test, and the strains on the flexure according to applied loads were compared with the result of the analysis by finite element method. The relation between applied loads and output signals showed good linearity, and the standard deviation on the residual errors from linear equation obtained by least square method was within 1.0 % of the maximum design moments. In addition, the FEM analysis on the thickness of load-connecting part of the flexure showed that the sensitivity was improved as the thickness became thin as much as desired to avoid buckling.

Roof Crush Analysis Technique Using Simple Model with Plastic Hinge Concepts (소성 힌지를 갖는 단순 보 모델을 이용한 루프 붕괴 해석 기술)

  • 강성종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.216-222
    • /
    • 1996
  • This paper presents a computational technique to predict roof crush resistance in early design stage of passenger car development. This technique use a simple F.E. model with nonlinear spring elements which represent plastic hinge behavior at weak areas. By assuming actual sections as equivalent simple sections, maximum bending moments which weak areas in major members can stand are theoretically calculated. Results from prediction of roof crush resistance are correlated well with test results.

  • PDF

Numerical Analysis of Hinge Joints in Modular Structures Based on the Finite Element Analysis of Joints (접합부 유한요소해석을 바탕으로 한 모듈러 구조물의 힌지접합부 수치해석적 연구)

  • Kim, Moon-Chan;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper introduces research on the hinge joint of modular structure joints using finite element analysis. The modular structure has a characteristic in that it is difficult to expect the integrity of columns and beams between unit modules because the construction is carried out such that the modules are stacked. However, the current modular design ignores these structural characteristics, considers the moment transmission for the lateral force, and analyzes it in the same manner as the existing steel structure. Moreover, to fasten the moment bonding, bolts are fastened outside and inside the module, resulting in an unreasonable situation in which the finish is added after assembly. To consider the characteristics that are difficult to expect, such as unity, a modular structure system using hinge joints was proposed. This paper proposed and reviewed the basic theory of joints by devising a modified scissors model that is modified from the scissors model used in other research to verify the transmission of load when changing from the existing moment junction to a hinge junction. Based on the basics, the results were verified by comparing them with Midas Gen, a structural analysis program. Additionally, the member strength and usability were reviewed by changing the modular structure designed as a moment joint to a hinge joint.

Moment-Rotation Relation of Steel Connections with Fixed-End Restraint (단부구속도에 따른 철골 접합부의 모멘트-회전각 관계에 관한 연구)

  • Ahn, Hyung-Joon;Kim, Keon-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.219-223
    • /
    • 2002
  • The actual behavior of joint is traditionally disregarded in steel frame design. In fact, the structural analysis of steel frames is generally carried out by assuming that joints fulfil the ideal condition of either a hinge or a fixed-end restraints. In this way, calculations are made somewhat simpler, but the structural model is not able to reflect the actual structural response. Therefore, steel frame classification system for estimation or analysis about behavior of steel frame should be established, and range that each connections belongs should be divided definitely. This research presents realistic and practical moment-rotation relation through investigation and analysis of steel frame beam-to-column classification system.

An Experimental Study on the Flexural Stiffness and Plastic Hinge Ratation Capacity of Reinforced High Performance Concrete Beams (고성능 철근콘크리트 보의 휨강성 및 소성힌지의 회전능력에 관한 실험적 연구)

  • 고만영;김상우;김용부
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.93-100
    • /
    • 1998
  • This paper presents a study on the flexural stiffness, plastic hinge length and plastic hinge rotation capacity of reinforced high performance concrete beams. 15 beams with different strength of concrete, reinforcement ratio and the pattern of loadings were tested. From the test results of reinforced normal strength concrete beams and reinforced high performance concrete beams with the concrete which has cylinder compressive strength of 700kg/${cm}^2$, slump value of 20~25cm and slump-flow value of 60~70cm. It is found that an extreme fiber concrete compressive strain of ${\varepsilon}_{cu}=0.0047$ may be used in ultimate curvature computations of reinforced high performance concrete beams. An empirical equation is proposed to estimate the effective moment of inertia. length and rotation capacity of plastic hinge of simply supported reinforced high performance concrete beams. The estimated deflections using this equation agree well with the experimental values.

Whole-working history analysis of seismic performance state of rocking wall moment frame structures based on plastic hinge evolution

  • Xing Su;Shi Yan;Tao Wang;Yuefeng Gao
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.175-189
    • /
    • 2024
  • Aiming at studying the plastic hinge (PH) evolution regularities and failure mode of rocking wall moment frame (RWMF) structure in earthquakes, the whole-working history analysis of seismic performance state of RWMF structure based on co-operation performance and PH evolution was carried out. Building upon the theoretical analysis of the elastic internal forces and deformations of RWMF structures, nonlinear finite element analysis (FEA) methods were employed to perform both Pushover analysis and seismic response time history analysis under different seismic coefficients (δ). The relationships among PH occurrence ratios (Rph), inter-story drifts and δ were established. Based on the plotted curve of the seismic performance states, evaluation limits for the Rph and inter-story drifts were provided for different performance states of RWMF structures. The results indicate that the Rph of RWMF structures exhibits a nonlinear evolution trend of "fast at first, then slow" with the increasing of δ. The general pattern is characterized by the initial development of beam hinges in the middle stories, followed by the development towards the top and bottom stories until the beam hinges are fully formed. Subsequently, the development of column hinges shifts from the bottom and top stories towards the middle stories of the structure, ultimately leading to the loss of seismic lateral capacity with a failure mode of partial beam yield, demonstrating a global yielding pattern. Moreover, the limits for the Rph and inter-story drifts effectively evaluate the five different performance states of RWMF structures.