• Title/Summary/Keyword: hinge moment

Search Result 178, Processing Time 0.021 seconds

Seismic Performance Evaluation of RC Bridge Piers by Macro Mathematical Model (Macro해석모델에 의한 RC교각의 내진 성능 평가)

  • Lee Dae Hyoung;Park Chang Kyu;Kim Hyun Jun;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.207-210
    • /
    • 2005
  • The objective of this research is to evaluate of seismic performance for reinforced concrete bridge piers with lap splices of longitudinal reinforcement steels using predict of nonlinear hysteric behavior. For the purpose, analytical trilinear hysteretic model has been used to simulate the force displacement hysteretic curve of RC bridge piers under repeated reversal loads. The moment capacity and corresponding curvature in the plastic hinge have been determined, and the enhanced hysteretic behavior model by five different kinds of branches has been proposed for modeling the stiffness variation of RC section under cyclic loading. The strength and stiffness degradation index are introduced to compute the hysteretic curve vary confinement steel ratio. In addition, the modified curvature factor has been introduced to forecast of seismic performance of longitudinal steel lap spliced and retrofitted specimens.

  • PDF

A load increment method for ductile reinforced concrete (RC) frame structures considering strain hardening effects

  • Gunhan Aksoylu, M.;Girgin, Konuralp
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.231-247
    • /
    • 2011
  • This study introduces a new load increment method for the ductile reinforced concrete (RC) frame structures by including strain-hardening effects. The proposed method is a nonlinear static analysis technique employed for RC frame structures subjected to constant gravity loads and monotonically increasing lateral loads. The material nonlinearity in RC structural elements is considered by adopting plastic hinge concept which is extended by including the strain hardening as well as interaction between bending moment and axial force. Geometric non-linearity, known as second order effect, is implemented to the method as well.

A Story-wise Distribution of Hysteretic Energy in Buckling-Restrained Braced Frames (비좌굴 가새골조의 층별 이력에너지 분포)

  • 최현훈;김진구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.286-293
    • /
    • 2003
  • In this study a story-wise distribution of hysteretic energy in multi-story steel moment-resisting framse (MRE), buckling restrained braced frames (BRBF-R), and hinge-connected framed structures with buckling restrained braces (BRBF-H) subjected to various earthquake ground excitations was investigated. According to analysis results the hysteretic energy in MRF and BRBF-R turned out to be the maximum at the base and monotonically diminishes with increasing height. In top stories the plastic deformation of members is almost negligible. However the story-wise distribution of hysteretic energy in BRBF-H was relatively uniform over the height of the structure. This is considered to be more desirable because damage is not concentrated in a single story.

  • PDF

Behavior of full-scale prestressed pile-deck connections for wharves under cyclic loading

  • Blandon, Carlos A.;Krier, Christopher J.;Restrepo, Jose I.
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.455-468
    • /
    • 2019
  • The behavior of pile-deck connections of pile-supported marginal wharfs subjected to earthquake loading is of key importance to ensure a good performance of this type of structures. Two precast-pretensioned pile-deck connections used in the construction of pile-supported marginal wharfs were tested under cyclic loading. The first is a connection with simple reinforcement details and light steel ratio developed for use where moderate pile-deck rotation demands are expected in the wharf. The second is specifically developed to sustain the large rotation, shear force and bending moment demands, as required for the shortest piles in a marginal wharf. Data obtained from the test program is used in the paper to calibrate an equivalent plastic hinge length that can be incorporated into nonlinear analysis models of these structures when prestressed pile-deck connections with duct embedded dowels are used.

Aerodynamic and hydrodynamic force simulation for the dynamics of double-pendulum articulated offshore tower

  • Zaheer, Mohd Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.341-354
    • /
    • 2021
  • Articulated towers are one of the class of compliant offshore structures that freely oscillates with wind and waves, as they are designed to have low natural frequency than ocean waves. The present study deals with the dynamic response of a double-pendulum articulated tower under hydrodynamic and aerodynamic loads. The wind field is simulated by two approaches, namely, single-point and multiple-point. Nonlinearities such as instantaneous tower orientation, variable added mass, fluctuating buoyancy, and geometrical nonlinearities are duly considered in the analysis. Hamilton's principle is used to derive the nonlinear equations of motion (EOM). The EOM is solved in the time domain by using the Wilson-θ method. The maximum, minimum, mean, and standard deviation and salient power spectral density functions (PSDF) of deck displacement, bending moment, and central hinge shear are drawn for high and moderate sea states. The outcome of the analyses shows that tower response under multiple-point wind-field simulation results in lower responses when compared to that of single-point simulation.

On the assessment of modal nonlinear pushover analysis for steel frames with semi-rigid connections

  • Zarfam, Panam;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.383-398
    • /
    • 2009
  • Applying nonlinear statistical analysis methods in estimating the performance of structures in earthquakes is strongly considered these days. This is due to the methods' simplicity, timely lower cost and reliable estimation in seismic responses in comparison with time-history nonlinear dynamic analysis. Among nonlinear methods, simplified to be incorporated in the future guidelines, Modal Pushover Analysis, known by the abbreviated name of MPA, simply models nonlinear behavior of structures; and presents a very proper estimation of nonlinear dynamic analysis using lateral load pattern appropriate to the mass. Mostly, two kinds of connecting joints, 'hinge' and 'rigid', are carried out in different type of steel structures. However, it should be highly considered that nominal hinge joints usually experience some percentages of fixity and nominal rigid connections do not employ totally rigid. Therefore, concerning the importance of these structures and the significant flexibility effect of connections on force distribution and elements deformation, these connections can be considered as semi-rigid with various percentages of fixity. Since it seems, the application and implementation of MPA method has not been studied on moment-resistant steel frames with semi rigid connections, this research focuses on this topic and issue. In this regard several rigid and semi-rigid steel bending frames with different percentages of fixity are selected. The structural design is performed based on weak beam and strong column. Followed by that, the MPA method is used as an approximated method and Nonlinear Response History Analysis (NL-RHA) as the exact one. Studying the performance of semi-rigid frames in height shows that MPA technique offers reasonably reliable results in these frames. The methods accuracy seems to decrease, when the number of stories increases and does decrease in correlation with the semi-rigidity percentages. This generally implies that the method can be used as a proper device in seismic estimation of different types of low and mid-rise buildings with semi-rigid connections.

Elasto-Plastic F.E. Analysis of Plane Framed Structures including Large Deformation Effects (대변형(大變形) 효과(效果)를 고려(考慮)한 평면(平面)뼈대 구조물(構造物)의 탄(彈)-소성(塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Yoo, Soon Jae;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.105-117
    • /
    • 1994
  • A finite element procedure which can trace plastic collapse behavior of plane frame structures under small and large deformation is presented. The member is assumed to be prismatic and straight, and has the rectangular or I cross section. For the elasto-plastic analysis, the concept of plastic hinge is introduced and the incremental displacement method is applied. The limit state condition of the plastic hinge is considered under the combined condition of a bending moment and an axial force. Numerical examples are presented in order to demonstrate the validity and efficiency of the proposed procedure.

  • PDF

The Comparison of Frame with Rigid Connections and Semi-rugid Connections using the RPH-2DF (수정소성힌지해석을 이용한 강접합 골조와 반당접합 골조의 비교)

  • Son, Seong Yong;Lee, Sang Sup;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.535-545
    • /
    • 2001
  • A refined method of analysis which is called the Advanced Analysis has been introduced This method is to consider the intial member imperfection residual stress and second-order effects so as to estimate the overall behavior of steel frame accurately Based on the refined plastic hinge method that is more suitable and practical in design practice. the program RPH-2DF is coded using the log model which represents the moment-rotation relationship of connection. The validity of this program is examined by frame test data. Finally to investigate the difference between behaviors of rigid and semi-rigid frame. the 10-story frame analysis results designed by MIDAS-GEN v4.2.2 are compared with the results by RPH-2DF.

  • PDF

Analysis on the Rigid Connections between the Large Diameter Drilled Shaft and the Pile Cap for the Sea-Crossing Bridges with Multiple Pile Foundations (다주식 기초 해상교량에서 대구경 현장타설말뚝과 파일캡의 강결합에 대한 분석)

  • Cho, Sung-Min;Park, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.343-358
    • /
    • 2008
  • Piles of a bridge pier are connected with a column through a pile cap(footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. This difference causes a change of the design method. Connection methods between pile heads and the pile cap are divided into two groups ; rigid connections and hinge connections. KHBDC(Korea Highway Bridge Design Code) has specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However some specifications prescribe that conservative results through investigations for both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which have very good quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) are unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the very large diameter drilled shaft and the pile cap for Incheon Bridge which will the longest bridge in Korea were investigated through the full modeling for rigid connection conditions.

  • PDF

Behaviour of the Reinforced Concrete Columns with Shear Reinforcement (전단보강량에 따른 철근콘크리트 기둥의 거동)

  • Nam, Sang-Uk;Song, Han-Beom;Tae, Kyung-Hoon;Yi, Waon-Ho;Oh, Sang-Hoon;Yang, Won-Jik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.45-48
    • /
    • 2008
  • Under earthquake loads, the columns on the lower stories carry large axial forces and horizontal forces as the earthquake loads are acting horizontally and vertically on the building. To distribute the energy entered into the building under earthquakes according to the plastic deformation of the members, it is safer and more economic to persuade plastic hinge to occur in the beams rather than on the columns. However, it is unavoidable to have plastic hinge occurring on the columns when it is applied on both of the main axes of the building, which results in high shear force on the column end, and reinforced concrete column may result in sudden brittle failure due to bending moment and shear force. To increase restriction of the reinforced concrete column on the horizontal forces, this study uses repetitive loading experiments with different amount of shear reinforcement, and analyzes and compares the structural safety and behaviour of the reinforced test materials.

  • PDF