• Title/Summary/Keyword: hilum

Search Result 123, Processing Time 0.024 seconds

Lodging-Tolerant, High Yield, Mechanized-Harvest Adaptable and Small Seed Soybean Cultivar 'Aram' for Soy-sprout (내도복 다수성 기계수확 적응 소립 나물용 콩 '아람')

  • Kang, Beom Kyu;Kim, Hyun Tae;Ko, Jong Min;Yun, Hong Tai;Lee, Young Hoon;Seo, Jeong Hyun;Jung, Chan Sik;Shin, Sang Ouk;Oh, Eun Yeong;Kim, Hong Sik;Oh, In Seok;Baek, In Youl;Oh, Jae Hyun;Seo, Min Jeong;Yang, Woo Sam;Kim, Dong Kwan;Gwak, Do Yeon
    • Korean Journal of Breeding Science
    • /
    • v.51 no.3
    • /
    • pp.214-221
    • /
    • 2019
  • 'Aram' is a soybean cultivar developed for soy-sprout. It was developed from the crossing of 'Bosug' (Glycine max IT213209) and 'Camp' (G. max IT267356) cultivars in 2007. F1 plants and F2 population were developed in 2009 and 2010. A promising line was selected in the F5 generation in 2011 using the pedigree method and it was evaluated for agronomic traits, yield, and soy-sprouts characteristics in a preliminary yield trial (PYT) in 2012 and an advanced yield trial (AYT) in 2013. Agronomic traits and yield were stable between 2014 and 2016 in the regional yield trial (RYT) in four regions (Suwon, Naju, Dalseong, and Jeju). Morphological characteristics of 'Aram' are as follows: determinate plant type, purple flowers, grey pubescence, yellow pods, and small, yellow, and spherical seeds (9.9 g 100-seeds-1) with a light brown hilum. The flowering date was the 5th of August and the maturity date was the 15th of October. Plant height, first pod height, number of nods, number of branches, and number of pods were 65 cm, 13 cm, 16, 4.5, and 99, respectively. In the sprout test, germination rate and sprout characteristics of 'Aram' were comparable to that of the 'Pungsannamulkong' cultivar. The yield of 'Aram' was 3.59 ton ha-1 and it was 12% higher than that of 'Pungsannamulkong' in southern area of Korea. The yield of 'Aram' in the Jeju region, which is the main region for soybean sprout production, was 20% higher than that of 'Pungsannamulkong'. The height of the first pod and the tolerance to lodging and pod shattering, which are connected to the adaptation to mechanized harvesting, were higher in 'Aram' compared to those in 'Pungsannamulkong'. Therefore, the 'Aram' cultivar is expected to be broadly cultivated because of its higher soybean sprout quality, and seed yield and better adaptation to mechanized harvesting. (Registration number: 7718)

Adaptability of the high first pod height, shattering-resistant soybean cultivar 'Saegeum' to mechanized harvesting (고착협 내탈립 기계수확 적응 장류·두부용 콩 품종 '새금')

  • Kim, Hyun Tae;Han, Won Young;Lee, Byung Won;Ko, Jong Min;Lee, Yeong Hoon;Baek, In Youl;Yun, Hong Tai;Ha, Tae Joung;Choi, Man Soo;Kang, Beom Kyu;Kim, Hyun Yeong;Seo, Jeong Hyun;Kim, Hong Sik;Shin, Sang Ouk;Oh, Jae Hyun;Kwak, Do Yeon;Seo, Min Jeong;Song, Yoon Ho;Jang, Eun Kyu;Yun, Geon Sik;Kang, Yeong Sik;Lee, Ji Yun;Shin, Jeong Ho;Choi, Kyu Hwan;Kim, Dong Kwan;Yang, Woo Sam
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.496-503
    • /
    • 2019
  • The soybean cultivar, 'Saegeum', has been developed for preparing soy-paste and tofu. The soybean cultivars 'Daepung' and 'SS98207-3SSD-168' were crossed in 2003 to obtain 'Saegeum'. Single seed descent method was used to advance the generation from F3 to F5, and the plant lines with promising traits were selected from F6 to F7 by pedigree method. The preliminary yield (PYT) and advanced yield trials (AYT) were conducted from 2009 to 2010, and the regional yield trial (RYT) was conducted in 12 regions between 2011 and 2013. The morphological characteristics of 'Saegeum' were as follows: determinate plant type, white flower, tawny pubescence color, and brown pod color. Flowering and maturity dates were August 2, XXXX and October 17, XXXX, respectively. Plant height, first pod height, number of nodes, number of branches, and number of pods were 79 cm, 18 cm, 16, 2.3, and 44, respectively. The seed characteristics of 'Saegeum' were as follows: yellow spherical shape, yellow hilum, and the 100-seed weight was 25.4 g. 'Saegeum' was resistant to bacterial pustule and SMV in the field test, and its lodging resistance was mildly strong, whereas its shattering resistance was excellent. The ability of this cultivar to be processed into tofu, soybean malt, and other fermented products was comparable with that of 'Daewonkong'. The yield of 'Saegeum' in the adaptable regions was 3.02 ton ha-1. Thus, 'Saegeum' is adaptable to mechanized harvesting because of its high first pod height, as well as lodging and shattering resistance. (Registration number: 5929)

Pre-operative Concurrent Chemoradiotherapy for Stage IlIA (N2) Non-Small Cell Lung Cancer (N2 병기 비소세포 폐암의 수술 전 동시화학방사선요법)

  • Lee, Kyu-Chan;Ahn, Yong-Chan;Park, Keunchil;Kim, Kwhan-Mien;Kim, Jhin-Gook;Shim, Young-Mog;Lim, Do-Hoon;Kim, Moon-Kyung;Shin, Kyung-Hwan;Kim, Dae-Yong;Huh, Seung-Jae;Rhee, Chong-Heon;Lee, Kyung-Soo
    • Radiation Oncology Journal
    • /
    • v.17 no.2
    • /
    • pp.100-107
    • /
    • 1999
  • Purpose: This is to evaluate the acute complication, resection rate, and tumor down-staging after pre-operative concurrent chemoradiotherapy for stage IIIA (N2) non-small cell lung cancer. Materials and Methods Fifteen patients with non-small cell lung cancer were enrolled in this study from May 1997 to June 1998 in Samsung Medical Center. The median age of the patients was 61 (range, 45~67) years and male to female ratio was 12:3. Pathologic types were squamous cell carcinoma (11) and adenocarcinoma (4). Pre-operative clinical tumor stages were cT1 in 2 patients, cT2 in T2, and cT3 in 1 and all were N2. Ten patients were proved to be N2 with mediastinoscopic biopsy and five had clinically evident mediastinal Iymph node metastases on the chest CT scans. Pre-operative radiation therapy field included the primary tumor, the ipsilateral hilum, and the mediastinum. Total radiation dose was 45 Gy over 5 weeks with daily dose of 1.8 Gy. Pre-operative concurrent chemotherapy consisted of two cycles of intravenous cis-Platin (100 mg/m$^{2}$) on day 1 and oral Etoposide (50 mg/m$^{2}$/day) on days 1 through 14 with 4 weeks' interval. Surgery was followed after the pre-operative re-evaluation including chest CT scan in 3 weeks of the completion of the concurrent chemoradiotherapy if there was no evidence of disease progression. Results : Full dose radiation therapy was administered to all the 15 patients. Planned two cycles of chemotherapy was completed in 11 patients and one cycle was given to four. One treatment related death of acute respiratory distress syndrome occurred In 15 days of surgery. Hospital admission was required in three patients including one with radiation pneumonitis and two with neutropenic fever. Hematologic complications and other acute complications including esophagitis were tolerable. Resection rate was 92.3% (12/l3) in 13 patients excluding two patients who refused surgery. Pleural seeding was found in one patient after thoracotomy and tumor resection was not feasible. Post-operative tumor stagings were pT0 in 3 patients, pTl in 6, and pT2 in 3. Lymph node status findings were pN0 in 8 patients, pN1 in 1, and pN2 in 3. Pathologic tumor down-staging was 61.5% (8/13) including complete response in three patients ($23.7%). Tumor stage was unchanged in four patients (30.8%) and progression was in one (7.7%). Conclusions : Pre-operative concurrent chemoradiotherapy for Stage IIIA (N2) non-small cell lung cancer demonstrated satisfactory results with no increased severe acute complications. This treatment shceme deserves more patinet accrual with long-term follow-up.

  • PDF