• 제목/요약/키워드: highly non-linear

검색결과 243건 처리시간 0.026초

고유진동수를 고려한 디스크 브레이크의 최적설계 (Optimal Design of a Disk-Brake Considering the Eigen-Frequency)

  • 유정훈;한상훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.655-659
    • /
    • 2003
  • In this study, an improved topology design methodology that is combined with genetic algorithm, response surface method is provided to overcome the limitations of the ordinary topology optimization methods on the complex non-linear problem. the method is applied to a disc brake system for reducing an automobile brake noise. The low frequency that may induces the brake noise under the unstable mode is increased by obtaining the optimal topology. The result is verified by the analysis of variance and confirmed that the estimators for the approximation equations are highly reliable

  • PDF

이동 물체를 실시간으로 추적하기 위한 Sensory-Motor System 설계 (The Design of the Sensory-Motor System for Real Time Object Tracking)

  • 이상희;동성수;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2780-2782
    • /
    • 2002
  • In this paper Valentine Braitenberg structure based sensory motor model for object tracking control system was proposed. Conventional model based control schemes are require highly non-linear mathematical models, which require long computational time to solve complex high order equations. Contrast to conventional models proposed system simply link signal data from camera directly to the inputs of neural network, and outputs of network are directly fed into input of motor driver of camera. With simple structure of sensory motor model, real time tracking control system for dynamic object was realized successfully, and the implementation of sensory motor model can overcome the limitation of model-based control schemes.

  • PDF

자기부상시스템의 레일진동제어기 구현 (The Implementation of a Rail-Vibration Controller of MagLev System)

  • 김종문;김석주;김춘경;박민국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2199-2202
    • /
    • 2002
  • In this paper, a rail-vibration controller of magnetic levitation system is designed and implemented. The target plant to be controlled is electro-magnetic type which is open-loop unstable, highly non-linear and time-varying system. The designed controller is validated by some kinds of experiments.

  • PDF

신경망 이용 공조기 고장검출 및 진단 (Fault Detection and Diagnosis for an Air-Handling Unit Using Artificial Neural Networks)

  • 이원용;경남호
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1288-1296
    • /
    • 2001
  • A scheme for on-line fault detection and diagnosis of an air-handling unit is presented. The fault detection scheme uses residuals which are generated by comparing each measurement with analytical redundancies computed from the reference models. In this paper, artificial neural networks (ANNs) are used to estimate analytical redundancy and to classify faults. The Lebenburg-Marquardt algorithm is used to train feed forward ANNs that provide estimates of continuous states and diagnosis results. The simulation result demonstrated that the ANNs can effectively detect and diagnose faults in the highly non-linear and complex HVAC systems.

  • PDF

Development of a Neuro Controller for a Negative Output Elementary Luo Converter

  • Kayalvizhi Ramanujam;Natarajan Sirukarumbur Pandurangan;Palanisamy Padmaloshani
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.140-145
    • /
    • 2007
  • The negative output elementary Luo converter is a newly developed DC-DC converter. Due to the time-varying and switching nature of the above converter, its dynamic behavior becomes highly non-linear. Conventional controllers are incapable of providing good dynamic performance for such a converter and, hence, a neural network is utilized as a controller in this work. The performance of the chosen Luo converter using PI versus neuro controls is compared under load and line disturbances using MATLAB and TMS320F2407 DSP. The results validate the superiority of the developed neuro controller.

A new design method for site-joints of the tower crane mast by non-linear FEM analysis

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • 제4권4호
    • /
    • pp.343-365
    • /
    • 2019
  • Among the themes related to earthquake countermeasures at construction sites, those for tower cranes are particularly important. An accident involving the collapse of a crane during the construction of a skyscraper has serious consequences, such as human injury or death, enormous repair costs, and significant delays in construction. One of the causes of deadly tower crane collapses is the destruction of the site joints of the tower crane mast. This paper proposes a new design method by static elastoplastic finite element analysis using a supercomputer for the design of the end plate-type tensile bolted joints, which are generally applied to the site joints of a tower crane mast. This new design method not only enables highly accurate and reliable joint design but also allows for a design that considers construction conditions, such as the introduction of a pre-tension axial force on the bolts. By applying this new design method, the earthquake resistance of tower cranes will undoubtedly be improved.

DEPENDENCE OF RUBBER FRICTION UPON ITS ELASTIC CHARACTERISTICS

  • Nakamura, T.;Hanase, T.;Itoigawa, F.;Matsubara, T.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.187-188
    • /
    • 2002
  • Rubber has large differences in elastic characteristics from the other solid materials such as metals. Firstly, the rubber exhibits considerably large elastic compliance. Second is highly non-linear elasticity in which the compliance decreases with increase in strain. The main objective in this research is to reveal the dependence of rubber friction upon these elastic characteristics of the rubber in detail. A super elastic FEM analysis is carried out with using an elastic property of practical rubber. From the calculated result, it is cleared that the rubber makes large real contacting area easier than the metals.

  • PDF

반응면 기법을 이용한 램 가속기 최적설계에 관한 연구 (Ram Accelerator Optimization Using the Response Surface Method)

  • 전용희;전권수;이재우;변영환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.159-165
    • /
    • 2000
  • In this paper, numerical study has been done for the improvement of the superdetonative ram accelerator performance and for the design optimization of the system. The objective function to optimize the premixture composition is the ram tube length required to accelerate projectile from initial velocity $V_o$ to target velocity $V_e$. The premixture is composed of $H_2,\;O_2,\;N_2$ and the mole numbers of these species are selected at design variables. RSM(Response Surface Methodology) which is widely used for the complex optimization problems is selected as the optimization technique. In particular, to improve the non-linearity of the response and to consider the accuracy and efficiency of the solution, design space stretching technique has been applied. Separate sub-optimization routine is introduced to determine the stretching position and clustering parameters which construct the optimum regression model. Two step optimization technique has been applied to obtain the optimal system. With the application of stretching technique, we can perform system optimization with a small number of experimental points, and construct precise regression model for highly non-linear domain. The error to compared with analysis result is only $0.01\%$ and it is demonstrated that present method can be applied more practical design optimization problems with many design variables.

  • PDF

Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • 제15권5호
    • /
    • pp.481-505
    • /
    • 2013
  • This paper focuses on thermal post-buckling analysis of functionally graded beams with temperature dependent physical properties by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces and therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In this study, the differences between temperature dependent and independent physical properties are investigated for functionally graded beams in detail in post-buckling case. With the effects of material gradient property and thermal load, the relationships between deflections, critical buckling temperature and maximum stresses of the beams are illustrated in detail in post-buckling case.

반응면 기법을 이용한 램 가속기 최적설계에 관한 연구 (Ram Accelerator Optimization Using the Response Surface Method)

  • 전권수;전용희;이재우;변영환
    • 한국전산유체공학회지
    • /
    • 제5권2호
    • /
    • pp.55-63
    • /
    • 2000
  • In this paper, the numerical study has been done for the improvement of the superdetonative ram accelerator performance and for the design optimization of the system. The objective function to optimize the premixture composition is the ram tube length, required to accelerate projectile from initial velocity V/sub 0/ to target velocity V/sub e/. The premixture is composed of H₂, O₂, N₂ and the mole numbers of these species are selected as design variables. RSM(Response Surface Methodology) which is widely used for the complex optimization problems is selected as the optimization technique. In particular, to improve the non-linearity of the response and to consider the accuracy and the efficiency of the solution, design space stretching technique has been applied. Separate sub-optimization routine is introduced to determine the stretching position and clustering parameters which construct the optimum regression model. Two step optimization technique has been applied to obtain the optimal system. With the application of stretching technique, we can perform system optimization with a small number of experimental points, and construct precise regression model for highly non-linear domain. The error compared with analysis result is only 0.01% and it is demonstrated that present method can be applied to more practical design optimization problems with many design variables.

  • PDF