• Title/Summary/Keyword: higher-order shear theory

Search Result 395, Processing Time 0.031 seconds

Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations

  • Zohra, Abdelhak;Benferhat, Rabia;Tahar, Hassaine Daouadji;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.797-807
    • /
    • 2021
  • A new simple solution for critical buckling of FG sandwich plates under axial and biaxial loads is presented using new modified power-law formulations. Both even and uneven distributions of porosity are taken into account in this study. Material properties of the sandwich plate faces are assumed to be graded in the thickness direction according to a modified power-law distribution in terms of the volume fractions of the constituents. Equilibrium and stability equations of FG sandwich plate with various boundary conditions are derived using the higher-order shear deformation plate theory. The results reveal that the distribution shape of the porosity, the gradient index, loading type and functionally graded layers thickness have significant influence on the buckling response of functionally graded sandwich plates.

Nonlinear damping and forced vibration analysis of laminated composite plates with composite viscoelastic core layer

  • Youzera, Hadj;Ali, Abbache;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.91-104
    • /
    • 2022
  • The purpose of the present work is to study the parametric nonlinear vibration behavior of three layered symmetric laminated plate. In the analytical formulation; both normal and shear deformations are considered in the core layer by means of the refined higher-order zig-zag theory. Harmonic balance method in conjunction with Galerkin procedure is adopted for simply supported laminate plate, to obtain its natural and damping properties. For these aims, a set of complex amplitude equations governed by complex parameters are written accounting for the geometric nonlinearity and viscoelastic damping factor. The frequency response curves are presented and discussed by varying the material and geometric properties of the core layer.

Thermal buckling and stability of laminated plates under non uniform temperature distribution

  • Widad Ibraheem Majeed;Ibtehal Abbas Sadiq
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.503-511
    • /
    • 2023
  • Stability of laminated plate under thermal load varied linearly along thickness, is developed using a higher order displacement field which depend on a parameter "m", whose value is optimized to get results closest to three-dimension elasticity results. Hamilton, s principle is used to derive equations of motion for laminated plates. These equations are solved using Navier-type for simply supported boundary conditions to obtain non uniform critical thermal buckling and fundamental frequency under a ratio of this load. Many design parameters of cross ply and angle ply laminates such as, number of layers, aspect ratios and E1/E2 ratios for thick and thin plates are investigated. It is observed that linear and uniform distribution of temperature reduces plate frequency.

Dynamic analysis of viscoelastic FGM shells with porosities on elastic foundation

  • Mehmet Halil Calim;Omer Faruk Capar;Mehmet Bugra Ozbey;Yavuz Cetin Cuma
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.55-72
    • /
    • 2024
  • This study investigates free and damped vibration behaviours of porous functionally graded shells supported by Winkler-Pasternak foundation, considering different geometries. Utilizing a higher-order shear deformation theory, the displacement field is determined. The equations of motion are formulated using Hamilton's principle, and the solutions are obtained Navier's method employing double Fourier series. Parametric studies regarding the effects of porosity, material distribution, elastic foundation, shell geometry and damping are carried out. Results are given in tabular and graphical form for the free and forced vibration analyses, respectively.

The effect of embedding a porous core on the free vibration behavior of laminated composite plates

  • Safaei, Babak
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.659-670
    • /
    • 2020
  • This paper proposes the use of a porous core between layers of laminated composite plates to examine its effect on the natural frequencies of the resulted porous laminated composite sandwich plate (PLCSP) resting on a two-parameter elastic foundation. Moreover, it has been suggested that the dispersion of porosity has two different functionally graded (FG) patterns which are compared with a uniformly dispersed (UD) profile to find their best vibrational efficiency in the proposed PLCSPs. In FG patterns, two types of dispersions, including symmetric (FG-S) and asymmetric (FG-A) patterns have been considered. To derive the governing Eigen value equation of such structures, the first order shear deformation theory (FSDT) of plates has been employed. Accordingly, a finite element method (FEM) is developed to solve the derived Eigen value equation. Using the mentioned theory and method, the effects of porosity parameters, fiber orientation of laminated composite, geometrical dimensions, boundary conditions and elastic foundation on the natural frequencies of the proposed PLCSPs have been studied. It is observed that embedding porosity in core layer leads to a significant improvement in the natural frequencies of PLCSPs. Moreover, the natural frequencies of PLCSPs with FG porous core are higher than those with UD porous core.

Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.541-557
    • /
    • 2018
  • This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.

Chaotic phenomena in the organic solar cell under the impact of small particles

  • Jing, Pan;Zhe, Jia;Guanghua, Zhang
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.15-31
    • /
    • 2023
  • Organic solar cells utilized natural polymers to convert solar energy to electricity. The demands for green energy production and less disposal of toxic materials make them one of the interesting candidates for replacing conventional solar cells. However, the different aspects of their properties including mechanical strength and stability are not well recognized. Therefore, in the present study, we aim to explore the chaotic responses of these organic solar cells. In doing so, a specific type of organic solar cell constructed from layers of material with different thicknesses is considered to obtain vibrational and chaotic responses under different boundaries and initial conditions. A square plate structure is examined with first-order shear deformation theory to acquire the displacement field in the laminated structure. The bounding between different layers is considered to be perfect with no sliding and separation. On the other hand, nonlocal elasticity theory is engaged in incorporating the structural effects of the organic material into calculations. Hamilton's principle is adopted to obtain governing equations with regard to boundary conditions and mechanical loadings. The extracted equations of motion were solved using the perturbation method and differential quadrature approach. The results demonstrated the significant effect of relative glass layer thickness on the chaotic behavior of the structure with higher relative thickness leading to less chaotic responses. Moreover, a comprehensive parameter study is presented to examine the effects of nonlocality and relative thicknesses on the natural frequency of square organic solar cell structure.

Analysis of the hygro-thermo-mechanical response of functionally graded plates resting on elastic foundations based on various micromechanical models

  • Belkacem Adim;Tahar Hassaine Daouadji
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.409-420
    • /
    • 2024
  • In this research the hygro-thermo-mechanical loading and micromechanical model effects on bending behavior of functionally graded material plates resting on Winkler and Pasternak elastic foundations, the higher order shear deformation theory is used here. The material properties of the plate: young's modulus, thermal coefficient and moisture expansion coefficient are assumed to be graded in the thickness direction according to various micromechanical models starting with the Voigt's model which is commonly used in most functionally graded plates studies to the Reuss's, LRVE's and Mori-Tanaka's models. The principle of virtual displacement is used to determine the equilibrium equations and the a several numerical results are given to validate the precision of the present method for bending behavior of FGM plates subjected to hygro-thermo-mechanical loading resting on elastic foundations. Afterwards, a parametric study is conducted to determine the effect of different parameters on the deflection of the FGM plates like micromechanical models, type of loading and plate geometry. In the lights of the present research, it can be concluded that the present theory is accurate and simple in predicting the deflection behavior of functionally graded plates under hygro-thermo-mechanical effects and micromechanical models.