• Title/Summary/Keyword: higher-order shear theory

Search Result 395, Processing Time 0.025 seconds

Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation

  • Hadji, Lazreg;Bernard, Fabrice
    • Advances in materials Research
    • /
    • v.9 no.1
    • /
    • pp.63-98
    • /
    • 2020
  • The novelty of this paper is the use of a simple higher order shear and normal deformation theory for bending and free vibration analysis of functionally graded material (FGM) beams on two-parameter elastic foundation. To this aim, a new shear strain shape function is considered. Moreover, the proposed theory considers a novel displacement field which includes undetermined integral terms and contains fewer unknowns with taking into account the effects of both transverse shear and thickness stretching. Different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. In addition, the effect of different micromechanical models on the bending and free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams for which properties vary continuously across the thickness according to a simple power law. Hamilton's principle is used to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio, foundation parameter, the volume fraction of porosity and micromechanical models on the displacements, stresses, and frequencies.

New enhanced higher order free vibration analysis of thick truncated conical sandwich shells with flexible cores

  • Fard, Keramat Malekzadeh;Livani, Mostafa
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.719-742
    • /
    • 2015
  • This paper dealt the free vibration analysis of thick truncated conical composite sandwich shells with transversely flexible cores and simply supported boundary conditions based on a new improved and enhanced higher order sandwich shell theory. Geometries were used in the present work for the consideration of different radii curvatures of the face sheets and the core was unique. The coupled governing partial differential equations were derived by the Hamilton's principle. The in-plane circumferential and axial stresses of the core were considered in the new enhanced model. The first order shear deformation theory was used for the inner and outer composite face sheets and for the core, a polynomial description of the displacement fields was assumed based on the second Frostig's model. The effects of types of boundary conditions, conical angles, length to radius ratio, core to shell thickness ratio and core radius to shell thickness ratio on the free vibration analysis of truncated conical composite sandwich shells were also studied. Numerical results are presented and compared with the latest results found in literature. Also, the results were validated with those derived by ABAQUS FE code.

Shear locking-free earthquake analysis of thick and thin plates using Mindlin's theory

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.373-385
    • /
    • 2009
  • The purpose of this paper is to study shear locking-free parametric earthquake analysis of thick and thin plates using Mindlin's theory, to determine the effects of the thickness/span ratio, the aspect ratio and the boundary conditions on the linear responses of thick and thin plates subjected to earthquake excitations. In the analysis, finite element method is used for spatial integration and the Newmark-${\beta}$ method is used for the time integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the earthquake analysis of thick and thin plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.

Shear locking-free analysis of thick plates using Mindlin's theory

  • Ozdemir, Y.I.;Bekiroglu, S.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.311-331
    • /
    • 2007
  • The purpose of this paper is to study shear locking-free analysis of thick plates using Mindlin's theory and to determine the effects of the thickness/span ratio, the aspect ratio and the boundary conditions on the linear responses of thick plates subjected to uniformly distributed loads. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 8- and 17-noded quadrilateral finite elements are used. Graphs and tables are presented that should help engineers in the design of thick plates. It is concluded that 17-noded finite element converges to exact results much faster than 8-noded finite element, and that it is better to use 17-noded finite element for shear-locking free analysis of plates. It is also concluded, in general, that the maximum displacement and bending moment increase with increasing aspect ratio, and that the results obtained in this study are better than the results given in the literature.

A new higher order shear and normal deformation theory for functionally graded beams

  • Meradjah, Mustapha;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.793-809
    • /
    • 2015
  • In this scientific work, constructing of a novel shear deformation beam model including the stretching effect is of concern for flexural and free vibration responses of functionally graded beams. The particularity of this model is that, in addition to considering the transverse shear deformation and the stretching effect, the zero transverse shear stress condition on the beam surface is assured without introducing the shear correction parameter. By employing the Hamilton's principle together with the concept of the neutral axe's position for such beams, the equations of motion are obtained. Some examples are performed to demonstrate the effects of changing gradients, thickness stretching, and thickness to length ratios on the bending and vibration of functionally graded beams.

Efficient Thermal Stress Analysis of Laminated Composite Plates using Enhanced First-order Shear Deformation Theory (일차전단변형이론을 이용한 복합재료 적층평판의 효율적 열응력 해석)

  • Han, Jang-Woo;Kim, Jun-Sik;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.505-512
    • /
    • 2012
  • In this paper, an efficient yet accurate method for the thermal stress analysis using a first order shear deformation theory(FSDT) is presented. The main objective herein is to systematically modify transverse shear strain energy through the mixed variational theorem(MVT). In the mixed formulation, independent transverse shear stresses are taken from the efficient higher-order zigzag plate theory, and the in-plane displacements are assumed to be those of the FSDT. Moreover, a smooth parabolic distribution through the thickness is assumed in the transverse normal displacement field in order to consider a transverse normal deformation. The resulting strain energy expression is referred to as an enhanced first order shear deformation theory, which is obtained via the mixed variational theorem with transverse normal deformation effect(EFSDTM_TN). The EFSDTM_TN has the same computational advantage as the FSDT_TN(FSDT with transverse normal deformation effect) does, which allows us to improve the through-the-thickness distributions of displacements and stresses via the recovery procedure. The thermal stresses obtained by the present theory are compared with those of the FSDT_TN and three-dimensional elasticity.

Mechanical behaviour analysis of FGM plates on elastic foundation using a new exponential-trigonometric HSDT

  • Fatima Z. Zaoui;Djamel Ouinas;Abdelouahed Tounsi;Belkacem Achour;Jaime A. Vina Olay;Tayyab A. Butt
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.551-568
    • /
    • 2023
  • In this research, a new two-dimensional (2D) and quasi three-dimensional (quasi-3D) higher order shear deformation theory is devised to address the bending problem of functionally graded plates resting on an elastic foundation. The displacement field of the suggested theories takes into account a parabolic transverse shear deformation shape function and satisfies shear stress free boundary conditions on the plate surfaces. It is expressed as a combination of trigonometric and exponential shear shape functions. The Pasternak mathematical model is considered for the elastic foundation. The material properties vary constantly across the FG plate thickness using different distributions as power-law, exponential and Mori-Tanaka model. By using the virtual works principle and Navier's technique, the governing equations of FG plates exposed to sinusoidal and evenly distributed loads are developed. The effects of material composition, geometrical parameters, stretching effect and foundation parameters on deflection, axial displacements and stresses are discussed in detail in this work. The obtained results are compared with those reported in earlier works to show the precision and simplicity of the current formulations. A very good agreement is found between the predicted results and the available solutions of other higher order theories. Future mechanical analyses of three-dimensionally FG plate structures can use the study's findings as benchmarks.

A refined HSDT for bending and dynamic analysis of FGM plates

  • Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Ouinas, Djamel;Olay, Jaime A. Vina
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.105-119
    • /
    • 2020
  • In this work, a novel higher-order shear deformation theory (HSDT) for static and free vibration analysis of functionally graded (FG) plates is proposed. Unlike the conventional HSDTs, the proposed theory has a novel displacement field which includes undetermined integral terms and contains fewer unknowns. Equations of motion are obtained by using Hamilton's principle. Analytical solutions for the bending and dynamic investigation are determined for simply supported FG plates. The computed results are compared with 3D and quasi-3D solutions and those provided by other plate theories. Numerical results demonstrate that the proposed HSDT can achieve the same accuracy of the conventional HSDTs which have more number of variables.

Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations

  • Hadj, Bekki;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is developed to study the effect of the distribution shape of porosity on static behavior of FG plates. It was found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of deflection, normal and shear stress. It can be concluded that the proposed theory is simple and precise for the resolution of the behavior of flexural FGM plates resting on elastic foundations while taking into account the shape of distribution of the porosity.

Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions

  • Aicha, Kablia;Rabia, Benferhat;Daouadji, Tahar Hassaine;Bouzidene, Ahmed
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.575-597
    • /
    • 2020
  • Equilibrium equations of a porous FG plate resting on Winkler-Pasternak foundations with various boundary conditions are derived using a new refined shear deformation theory. Different types of porosity distribution rate are considered. Governing equations are obtained including the plate-foundation interaction. This new model meets the nullity of the transverse shear stress at the upper and lower surfaces of the plate. The novel rule of mixture is proposed to describe and approximate material properties of the FG plates with different distribution case of porosity. The validity of this theory is studied by comparing some of the present results with other higher-order theories reported in the literature. Effects of variation of porosity distribution rate, boundary conditions, foundation parameter, power law index, plate aspect ratio, side-to-thickness ratio on the deflections and stresses are all discussed.