• 제목/요약/키워드: higher-order shear

검색결과 690건 처리시간 0.032초

보론강 고온전단공정에서 전단속도 및 메커니즘에 따른 전단면 특성 파악에 관한 연구 (A study on the characterization of shear surface according to shear rate and shear mechanism in high temperature shear process of boron steel)

  • 전용준;최현석;이환주;김도언
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.37-41
    • /
    • 2017
  • With light vehicle weight gradually becoming ever more importance due to tightened exhaust gas regulations, hot-stamping processing using boron alloyed steel is being applied more and more by major automobile OEMs since process assures both moldability and a high strength of 1.5 GPa. Although laser trimming is generally applied to the post-processing of the hot-stamped process with high strength, there have been many studies of in-die hot trimming using shear dies during the quenching of material in order to shorten processing times. As such, this study investigated the effects of the Shear rate and Shear mechanism on shear processes during the quenching process of hot-stamping material. In case of pad variable, padding force is very weak compared with shear force, so it does not affect the shear surface. In case of shear rate, the higher the shear at high temperatures and the higher the friction effect. As a result the rollover and the fracture distribution decreased, and the burnish distribution increased. Therefore, it is considered that the shear quality is guaranteed when high shear rate is applied in high temperature shear process.

Free vibration of cross-ply laminated plates based on higher-order shear deformation theory

  • Javed, Saira;Viswanathan, K.K.;Izyan, M.D. Nurul;Aziz, Z.A.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.473-484
    • /
    • 2018
  • Free vibration of cross-ply laminated plates using a higher-order shear deformation theory is studied. The arbitrary number of layers is oriented in symmetric and anti-symmetric manners. The plate kinematics are based on higher-order shear deformation theory (HSDT) and the vibrational behaviour of multi-layered plates are analysed under simply supported boundary conditions. The differential equations are obtained in terms of displacement and rotational functions by substituting the stress-strain relations and strain-displacement relations in the governing equations and separable method is adopted for these functions to get a set of ordinary differential equations in term of single variable, which are coupled. These displacement and rotational functions are approximated using cubic and quantic splines which results in to the system of algebraic equations with unknown spline coefficients. Incurring the boundary conditions with the algebraic equations, a generalized eigen value problem is obtained. This eigen value problem is solved numerically to find the eigen frequency parameter and associated eigenvectors which are the spline coefficients.The material properties of Kevlar-49/epoxy, Graphite/Epoxy and E-glass epoxy are used to show the parametric effects of the plates aspect ratio, side-to-thickness ratio, stacking sequence, number of lamina and ply orientations on the frequency parameter of the plate. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium

  • Kolahchi, Reza;Bidgoli, Ali Mohammad Moniri;Heydari, Mohammad Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1001-1014
    • /
    • 2015
  • Bending analysis of functionally graded (FG) nano-plates is investigated in the present work based on a new sinusoidal shear deformation theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. The material properties of nano-plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The size effects are considered based on Eringen's nonlocal theory. Governing equations are derived using energy method and Hamilton's principle. The closed-form solutions of simply supported nano-plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. The effects of different parameters such as nano-plate length and thickness, elastic foundation, orientation of foundation orthtotropy direction and nonlocal parameters are shown in dimensionless displacement of system. It can be found that with increasing nonlocal parameter, the dimensionless displacement of nano-plate increases.

비등방성 복합적층판 및 쉘 구조의 휨, 자유진동 및 좌굴해석 (Bending, Free Vibration and Buckling Analysis of Anisotropic Composite Laminated Plate and Shell Structures)

  • 윤석호
    • 한국강구조학회 논문집
    • /
    • 제11권1호통권38호
    • /
    • pp.55-67
    • /
    • 1999
  • 복합재료로 구성된 복합적층판 및 쉘과 같은 구조물은 탄성계수와 전단탄성 계수의 비가 매우 커서 전단변형의 영향이 크므로 정확한 해를 얻기 위하여 해석 및 설계에서 필수적으로 전단변형을 고려해야 하며, 고차의 전단변형이론에 의한 해석은 더욱 정확한 해를 얻을 수 있다. 본 연구는 단순지지 경계조건을 갖는 복합적층판 및 쉘에 대하여 3차 전단변형 이론을 적용하여 플라이 각도, 층의 수에 따른 복합적층판 및 쉘의 휨, 진동, 좌굴 특성을 연구한다.

  • PDF

복소 전단탄성계수를 갖는 다층 감쇠보의 유한요소 진동 해석 (Finite Element Vibration Analysis of Multi-layered Damped Sandwich Beam with Complex Shear Modulus)

  • 배승훈;원성규;정의봉;조진래;배수룡
    • 한국소음진동공학회논문집
    • /
    • 제21권1호
    • /
    • pp.9-17
    • /
    • 2011
  • In this paper, the general equation of motion of damped sandwich beam with multi-viscoelastic material layer was derived based on the equation presented by Mead and Markus. The viscoelastic layer, which has characteristics of complex shear modulus, was assumed to be dominantly under shear deformation. The equation of motion of n-layered damped sandwich beam in bending could be represented by (n+3)th order ordinary differential equation. Finite element model for the n-layered damped sandwich beam was formulated and programmed using higher order shape functions. Several numerical examples were implemented to show the effects of damped material.

Mechanical and thermal stability investigation of functionally graded plates resting on elastic foundations

  • Houari, Ali;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.423-434
    • /
    • 2018
  • In present work, both the hyperbolic shear deformation theory and stress function concept are used to study the mechanical and thermal stability responses of functionally graded (FG) plates resting on elastic foundation. The accuracy of the proposed formulation is checked by comparing the computed results with those predicted by classical plate theory (CPT), first-order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Moreover, results demonstrate that the proposed formulation can achieve the same accuracy of the existing HSDTs which have more number of governing equations.

Vibration Analysis of Smart Embedded Shear Deformable Nonhomogeneous Piezoelectric Nanoscale Beams based on Nonlocal Elasticity Theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Zenkour, Ashraf M.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.255-269
    • /
    • 2017
  • Free vibration analysis is presented for a simply-supported, functionally graded piezoelectric (FGP) nanobeam embedded on elastic foundation in the framework of third order parabolic shear deformation beam theory. Effective electro-mechanical properties of FGP nanobeam are supposed to be variable throughout the thickness based on power-law model. To incorporate the small size effects into the local model, Eringen's nonlocal elasticity theory is adopted. Analytical solution is implemented to solve the size-dependent buckling analysis of FGP nanobeams based upon a higher order shear deformation beam theory where coupled equations obtained using Hamilton's principle exist for such beams. Some numerical results for natural frequencies of the FGP nanobeams are prepared, which include the influences of elastic coefficients of foundation, electric voltage, material and geometrical parameters and mode number. This study is motivated by the absence of articles in the technical literature and provides beneficial results for accurate FGP structures design.

Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect

  • Dehsaraji, Maryam Lori;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.657-670
    • /
    • 2020
  • In this paper, vibration analysis of functionally graded nanoshell is studied based on the sinusoidal higher-order shear and normal deformation theory to account thickness stretching effect. To account size-dependency, Eringen nonlocal elasticity theory is used. For more accurate modeling the problem and corresponding numerical results, sinusoidal higher-order shear and normal deformation theory including out of plane normal strain is employed in this paper. The radial displacement is decomposed into three terms to show variation along the thickness direction. Governing differential equations of motion are derived using Hamilton's principle. It is assumed that the cylindrical shell is made of an arbitrary composition of metal and ceramic in which the local material properties are measured based on power law distribution. To justify trueness and necessity of this work, a comprehensive comparison with some lower order and lower dimension works and also some 3D works is presented. After presentation of comparative study, full numerical results are presented in terms of significant parameters of the problem such as small scale parameter, length to radius ratio, thickness to radius ratio, and number of modes.

Free vibrations of laminated composite plates using a novel four variable refined plate theory

  • Sehoul, Mohammed;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제24권5호
    • /
    • pp.603-613
    • /
    • 2017
  • In this research, the free vibration response of laminated composite plates is investigated using a novel and simple higher order shear deformation plate theory. The model considers a non-linear distribution of the transverse shear strains, and verifies the zero traction boundary conditions on the surfaces of the plate without introducing shear correction coefficient. The developed kinematic uses undetermined integral terms with only four unknowns. Equations of motion are obtained from the Hamilton's principle and the Navier method is used to determine the closed-form solutions of antisymmetric cross-ply and angle-ply laminates. Numerical examples studied using the present formulation is compared with three-dimensional elasticity solutions and those calculated using the first-order and the other higher-order theories. It can be concluded that the present model is not only accurate but also efficient and simple in studying the free vibration response of laminated composite plates.

Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.205-225
    • /
    • 2016
  • In this study the finite element method is utilized to predict the deflection and vibration characteristics of rectangular plates made of saturated porous functionally graded materials (PFGM) within the framework of the third order shear deformation plate theory. Material properties of PFGM plate are supposed to vary continuously along the thickness direction according to the power-law form and the porous plate is assumed of the form where pores are saturated with fluid. Various edge conditions of the plate are analyzed. The governing equations of motion are derived through energy method, using calculus of variations while the finite element model is derived based on the constitutive equation of the porous material. According to the numerical results, it is revealed that the proposed modeling and finite element approach can provide accurate deflection and frequency results of the PFGM plates as compared to the previously published results in literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as porosity volume fraction, material distribution profile, mode number and boundary conditions on the natural frequencies and deflection of the PFGM plates in detail. It is explicitly shown that the deflection and vibration behaviour of porous FGM plates are significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FGM plates with porosity phases.