• Title/Summary/Keyword: higher-order chromatin structure

Search Result 7, Processing Time 0.025 seconds

Advances in higher-order chromatin architecture: the move towards 4D genome

  • Jung, Namyoung;Kim, Tae-Kyung
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.233-245
    • /
    • 2021
  • In eukaryotes, the genome is hierarchically packed inside the nucleus, which facilitates physical contact between cis-regulatory elements (CREs), such as enhancers and promoters. Accumulating evidence highlights the critical role of higher-order chromatin structure in precise regulation of spatiotemporal gene expression under diverse biological contexts including lineage commitment and cell activation by external stimulus. Genomics and imaging-based technologies, such as Hi-C and DNA fluorescence in situ hybridization (FISH), have revealed the key principles of genome folding, while newly developed tools focus on improvement in resolution, throughput and modality at single-cell and population levels, and challenge the knowledge obtained through conventional approaches. In this review, we discuss recent advances in our understanding of principles of higher-order chromosome conformation and technologies to investigate 4D chromatin interactions.

Characterization of Structural Variations in the Context of 3D Chromatin Structure

  • Kim, Kyukwang;Eom, Junghyun;Jung, Inkyung
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.512-522
    • /
    • 2019
  • Chromosomes located in the nucleus form discrete units of genetic material composed of DNA and protein complexes. The genetic information is encoded in linear DNA sequences, but its interpretation requires an understanding of three-dimensional (3D) structure of the chromosome, in which distant DNA sequences can be juxtaposed by highly condensed chromatin packing in the space of nucleus to precisely control gene expression. Recent technological innovations in exploring higher-order chromatin structure have uncovered organizational principles of the 3D genome and its various biological implications. Very recently, it has been reported that large-scale genomic variations may disrupt higher-order chromatin organization and as a consequence, greatly contribute to disease-specific gene regulation for a range of human diseases. Here, we review recent developments in studying the effect of structural variation in gene regulation, and the detection and the interpretation of structural variations in the context of 3D chromatin structure.

Visualization of chromatin higher-order structures and dynamics in live cells

  • Park, Tae Lim;Lee, YigJi;Cho, Won-Ki
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.489-496
    • /
    • 2021
  • Chromatin has highly organized structures in the nucleus, and these higher-order structures are proposed to regulate gene activities and cellular processes. Sequencing-based techniques, such as Hi-C, and fluorescent in situ hybridization (FISH) have revealed a spatial segregation of active and inactive compartments of chromatin, as well as the non-random positioning of chromosomes in the nucleus, respectively. However, regardless of their efficiency in capturing target genomic sites, these techniques are limited to fixed cells. Since chromatin has dynamic structures, live cell imaging techniques are highlighted for their ability to detect conformational changes in chromatin at a specific time point, or to track various arrangements of chromatin through long-term imaging. Given that the imaging approaches to study live cells are dramatically advanced, we recapitulate methods that are widely used to visualize the dynamics of higher-order chromatin structures.

CTCF, Cohesin, and Chromatin in Human Cancer

  • Song, Sang-Hyun;Kim, Tae-You
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.114-122
    • /
    • 2017
  • It is becoming increasingly clear that eukaryotic genomes are subjected to higher-order chromatin organization by the CCCTC-binding factor/cohesin complex. Their dynamic interactions in three dimensions within the nucleus regulate gene transcription by changing the chromatin architecture. Such spatial genomic organization is functionally important for the spatial disposition of chromosomes to control cell fate during development and differentiation. Thus, the dysregulation of proper long-range chromatin interactions may influence the development of tumorigenesis and cancer progression.

Association of BAF53 with Mitotic Chromosomes

  • Lee, Kiwon;Shim, Jae Hwan;Kang, Mi Jin;Kim, Ji Hye;Ahn, Jong-Seong;Yoo, Soon Ji;Kim Kwon, Yunhee;Kwon, Hyockman
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.288-293
    • /
    • 2007
  • The conversion of mitotic chromosome into interphase chromatin consists of at least two separate processes, the decondensation of the mitotic chromosome and the formation of the higher-order structure of interphase chromatin. Previously, we showed that depletion of BAF53 led to the expansion of chromosome territories and decompaction of the chromatin, suggesting that BAF53 plays an essential role in the formation of higher-order chromatin structure. We report here that BAF53 is associated with mitotic chromosomes during mitosis. Immunostaining with two different anti-BAF53 antibodies gave strong signals around the DNA of mitotic preparations of NIH3T3 cells and mouse embryo fibroblasts (MEFs). The immunofluorescent signals were located on the surface of mitotic chromosomes prepared by metaphase spread. BAF53 was also found in the mitotic chromosome fraction of sucrose gradients. Association of BAF53 with mitotic chromosomes would allow its rapid activation on the chromatin upon exit from mitosis.

Sperm chromatin structure assay versus sperm chromatin dispersion kits: Technical repeatability and choice of assisted reproductive technology procedure

  • Laxme B, Vidya;Stephen, Silviya;Devaraj, Ramyashree;Mithraprabhu, Sridurga;Bertolla, Ricardo P.;Mahendran, Tara
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.4
    • /
    • pp.277-283
    • /
    • 2020
  • Objective: The sperm DNA fragmentation index (DFI) guides the clinician's choice of an appropriate assisted reproductive technology (ART) procedure. The DFI can be determined using commercially available methodologies, including sperm chromatin dispersion (SCD) kits and sperm chromatin structure assay (SCSA). Currently, when DFI is evaluated using SCD kits, the result is analyzed in reference to the SCSA-derived threshold for the choice of an ART procedure. In this study, we compared DFI values obtained using SCSA with those obtained using SCD and determined whether the difference affects the choice of ART procedure. Methods: We compared SCSA to two SCD kits, CANfrag (n=36) and Halosperm (n=31), to assess the DFI values obtained, the correlations between tests, the technical repeatability, and the impact of DFI on the choice of ART. Results: We obtained higher median DFI values using SCD kits than when using SCSA, and this difference was significant for the CANfrag kit (p<0.001). The SCD kits had significantly higher coefficients of variation than SCSA (p<0.001). In vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) would be chosen for a significantly higher proportion of patients if a decision were made based on DFI derived from SCD rather than DFI determined using SCSA (p=0.003). Conclusion: Our results indicate that SCD kit-specific thresholds should be established in order to avoid the unnecessary use of IVF/ICSI based on sperm DNA damage for the management of infertility. Appropriate measures should be taken to mitigate the increased variability inherent to the methods used in these tests.

Proteomic Study for Low Molecular Weight Peptides in the Mealworm Tenebrio molitor (갈색거저리 유래 저분자단백질체의 분석)

  • Kim, Il-Suk;Bang, Woo Young;Bang, Kyu Ho;Kim, Sam Woong
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.219-222
    • /
    • 2021
  • In this study, we examined low molecular weight peptides using proteomics in order to identify their original proteins, derive their peptides, and determine the functions of the proteins in Tenebrio molitor, the mealworm (larvae, pupae, or adult) from which the peptides were extracted. Fifty-four proteins were finally identified through an analysis of proteome to derive the analyzed peptides. The proteins that induced low molecular weight peptides were identified to be the most abundant in adults only, and the next highest were derived from a group containing both adults and larva. However, other groups, including pupa, were detected to have a lower frequency of peptides. As a result of orthologous classification of the detected proteins, the general function prediction was only investigated at the highest frequency among the examined proteins. Proteins related to chromatin structure and dynamics were detected by their higher frequency among functional classes. The next highest frequency was shown by proteins related to amino acid transport and metabolism and carbohydrate transport and metabolism. Therefore, it is assumed that proteins correlated with chromatin, amino acid, and carbohydrate metabolisms are easily induced into low molecular weight peptides, and that their peptides could play a role as bioactive substances.