• Title/Summary/Keyword: higher-mode effects

Search Result 362, Processing Time 0.023 seconds

Higher-mode effects for soil-structure systems under different components of near-fault ground motions

  • Khoshnoudian, Faramarz;Ahmadi, Ehsan;Sohrabi, Sina;Kiani, Mahdi
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.83-99
    • /
    • 2014
  • This study is devoted to estimate higher-mode effects for multi-story structures with considering soil-structure interaction subjected to decomposed parts of near-fault ground motions. The soil beneath the super-structure is simulated based on the Cone model concept. Two-dimensional structural models of 5, 15, and 25-story shear buildings are idealized by using nonlinear stick models. The ratio of base shears for the soil-MDOF structure system to those obtained from the equivalent soil-SDOF structure system is selected as an estimator to quantify the higher-mode effects. The results demonstrate that the trend of higher-mode effects is regular for pulse component and has a descending variation with respect to the pulse period, whereas an erratic pattern is obtained for high-frequency component. Moreover, the effect of pulse component on higher modes is more significant than high-frequency part for very short-period pulses and as the pulse period increases this phenomenon becomes vice-versa. SSI mechanism increases the higher-mode effects for both pulse and high-frequency components and slenderizing the super-structure amplifies such effects. Furthermore, for low story ductility ranges, increasing nonlinearity level leads to intensify the higher-mode effects; however, for high story ductility, such effects mitigates.

Nonlinear Pushover Analysis Considering Higher Mode Effects (고차모드의 효과를 고려한 비선형정적평가방법)

  • Eom, Tae-Sung;Lee, Hye-Rin;Park, Hong-Gun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.153-160
    • /
    • 2005
  • A new nonlinear static analysis method, Effective Modal Pushover Analysis (EMPA) which can evaluate earthquake responses such as story drift and plastic rotation of plastic hinges addressing higher mode effects was developed. Unlike existing nonlinear static procedure based on properties of fundamental vibration mode, the EMPA performs nonlinear static analysis using multiple effective modes constructed by direct combination of natural vibration modes. Therefore higher mode effects can be efficiently considered. In the present study, procedures of the EPMA evaluating inelastic earthquake responese were established and the results were verified by nonlinear time history analysis. The EMPA can be applied to seismic evaluation of high-rise buildings and irregular buildings where higher mode effects become conspicuous.

  • PDF

Extension of Direct Displacement-Based Design to Include Higher-Mode Effects in Planar Reinforced Concrete Frame Buildings

  • Abebe, Beka Hailu;Lee, Jong Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.299-309
    • /
    • 2018
  • Now that problems with force-based seismic design have been clearly identified, design is inclined toward displacement-based methods. One such widely used method is Direct-Displacement-Based Design (DDBD). Yet, one of the shortcomings of DDBD is considering higher-mode amplification of story shear, moments, and displacements using equations obtained from limited parametric studies of regular planar frames. In this paper, a different approach to account for higher-mode effects is proposed. This approach determines the lateral secant stiffness of the building frames that fulfill the allowable inter-story drift without exceeding the desired story displacements. Using the stiffness, an elastic response spectrum analysis is carried out to determine elastic higher-mode force effects. These force effects are then combined with DDBD-obtained first-mode force effects using the appropriate modal superposition method so that design can be performed. The proposed design procedure is verified using Nonlinear Time History Analysis (NTHA) of twelve planar frames in four categories accounting for mass and stiffness irregularity along the height. In general, the NTHA response outputs compared well with the allowable limits of the performance objective. Thus, it fulfills the aim of minimizing the use of NTHA for planar frame buildings, thereby saving computational resources and effort.

Modal Combination Method Considering Higher Mode Effects (고차모드 효과를 고려한 모드조합법)

  • Eom, Tae-Sung;Lee, Hye-Rin;Park, Hong-Gun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.185-192
    • /
    • 2005
  • Using existing static methods, it is possible to estimate accurately the reponses of structures governed by the fundamental mode. However, these methods do not provide reliable estimates for the structure where higher mode effects are significant. Parametric study was performed to analyze the dynamic characteristics of the structure with long vibration period. Based on the investigations, a new modal combination method using modal combination coefficients, Factored Modal Combination, was developed, and static earthquake load patterns addressing higher mode effects reasonably were proposed. Existing modal combination methods, such as SRSS and CQC, lack a theoretical basis to be applied to inelastic structures. In contrast, the proposed method can be applied conveniently in inelastic range as well as in elastic range.

  • PDF

Effects of diaphragm flexibility on the seismic design acceleration of precast concrete diaphragms

  • Zhang, Dichuan;Fleischman, Robert B.;Lee, Deuckhang
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.273-282
    • /
    • 2020
  • A new seismic design methodology for precast concrete diaphragms has been developed and incorporated into the current American seismic design code. This design methodology recognizes that diaphragm inertial forces during earthquakes are highly influenced by higher dynamic vibration modes and incorporates the higher mode effect into the diaphragm seismic design acceleration determination using a first mode reduced method, which applies the response modification coefficient only to the first mode response but keeps the higher mode response unreduced. However the first mode reduced method does not consider effects of diaphragm flexibility, which plays an important role on the diaphragm seismic response especially for the precast concrete diaphragm. Therefore this paper investigated the effect of diaphragm flexibility on the diaphragm seismic design acceleration for precast concrete shear wall structures through parametric studies. Several design parameters were considered including number of stories, diaphragm geometries and stiffness. It was found that the diaphragm flexibility can change the structural dynamic properties and amplify the diaphragm acceleration during earthquakes. Design equations for mode contribution factors considering the diaphragm flexibility were first established through modal analyses to modify the first mode reduced method in the current code. The modified first mode reduced method has then been verified through nonlinear time history analyses.

Comparison of Learning Effects using High-fidelity and Multi-mode Simulation: An Application of Emergency Care for a Patient with Cardiac Arrest (High-fidelity와 Multi-mode 시뮬레이션을 이용한 학습 효과 비교 : 심정지 환자 응급간호 적용)

  • Ryoo, Eon-Na;Ha, Eun-Ho;Cho, Jin-Young
    • Journal of Korean Academy of Nursing
    • /
    • v.43 no.2
    • /
    • pp.185-193
    • /
    • 2013
  • Purpose: Simulation-based learning has become a powerful method to improve the quality of care and help students meet the challenges of increasingly complex clinical practice settings. The purpose of this study was to identify the learning effects using high-fidelity SimMan and multi-mode simulation. Methods: Participants in this study were 38 students who were enrolled in an intensive course for a major in nursing at R college. Collected data were analyzed using Chi-square, t-test, and independent t-test with the SPSS 18.0 for Windows Program. Results: There were no statistically significant differences in learning effects between high-fidelity SimMan and multi-mode simulation group. However, skills in clinical performance in the high-fidelity SimMan group were higher than in the multi-mode group (p=.014), communication in clinical performance in multi-mode simulation group was higher than in the high-fidelity SimMan group (p<.001). Conclusion: Multi-mode simulation with a standardized patient is an effective learning method in many ways compared to a high-fidelity simulator. These results suggest that multi-mode simulation be offered to students in nursing colleges which cannot afford to purchase a high-fidelity simulator, or offered as an alternative.

Vertical distributions of lateral forces on base isolated structures considering higher mode effects

  • Tsai, C.S.;Chen, Wen-Shin;Chen, Bo-Jen;Pong, Wen-Shen
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.543-562
    • /
    • 2006
  • Base isolation technology has been accepted as a feasible and attractive way in improving seismic resistance of structures. The seismic design of new seismically isolated structures is mainly governed by the Uniform Building Code (UBC-97) published by the International Conference of Building Officials. In the UBC code, the distribution formula of the inertial (or lateral) forces leads to an inverted triangular shape in the vertical direction. It has been found to be too conservative for most isolated structures through experimental, computational and real earthquake examinations. In this paper, four simple and reasonable design formulae, based on the first mode of the base-isolated structures, for the lateral force distribution on isolated structures have been validated by a multiple-bay three-story base-isolated steel structure tested on the shaking table. Moreover, to obtain more accurate results for base-isolated structures in which higher mode contributions are more likely expected during earthquakes, another four inertial force distribution formulae are also proposed to include higher mode effects. Besides the experimental verification through shaking table tests, the vertical distributions of peak accelerations computed by the proposed design formulae are in good agreement with the recorded floor accelerations of the USC University Hospital during the Northridge earthquake.

The Effects of Institutions on Foreign Subsidiary's Operational Mode of Korean Firms (진출국 제도가 해외 자회사 운영 방식 선택에 미치는 영향에 관한 연구)

  • Lee, Eung Sok
    • International Area Studies Review
    • /
    • v.22 no.1
    • /
    • pp.61-78
    • /
    • 2018
  • Foreign subsidiary operation modes can be broadly divided into horizontal subsidiaries and vertical subsidiaries. According to institutional theory, foreign subsidiary operation mode differs depending on the host country institution. This study examines the effects of formal and informal institution on the foreign subsidiary operational mode of Korean firms. As a result of the empirical analysis, the higher the cultural distance and the lower political risks, the more favored the vertical foreign operation mode than the horizontal foreign operation mode. On the other hand, the higher the economic freedom and the lower corruption, the more favored the horizontal foreign operation mode than the vertical foreign operation mode.

Modified Mode Matching Technique for Analyzing Simple Expansion Chamber with Arbitrary Inlet/Outlet Location (임의의 입ㆍ출구 위치를 가지는 소음기 해석을 위한 개선된 모드일치법)

  • Kim, Bong-Jun;Jeong, Ui-Bong;Lee, Jeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1314-1322
    • /
    • 2000
  • The acoustic property of reactive type single expansion chamber can be analyzed by traditional plane wave theory. This theory can be applied in low frequency range and has good performance. But this theory can't include higher order modes, therefore another method is essential to analyze acoustic filter in high frequency range. Many researcher suggested the method that can concern higher order modes, and their methods are using mode matching technique. But there is no method that can be applied to the analysis of single expansion chamber with arbitrary inlet/outlet duct position and numbers of higher order modes of inlet/outlet duct and middle chamber. In this paper, the method which can analyze single expansion chamber with arbitrary inlet/outlet duct position and numbers of higher order modes of inlet/outlet duct and middle chamber using fundamental mode matching technique, was suggested and the predictions by this method was compared with those by the finite element method, and the influence of inlet/outlet location to acoustic performance of single expansion chamber is investigated and explained by higher order mode effects.

Lateral Load Distribution Factor for Pushover Analysis including Higher Mode Effects (고차모드 영향을 반영한 푸쉬오버 해석 횡력 분배계수)

  • Kim, Geon-Woo;Song, Jin-Gyu;Lee, Cheol-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2006
  • A procedure for determining the lateral load pattern for pushover analysis which includes higher mode effects is presented in this study. It is well-known that the details of future earthquakes at particular site is almost impossible to predict accurately and that the code-design spectra try to represent at least the average nature of probable future earthquakes. Thus the code-design spectrum is directly used as the input earthquakes in this paper when incorporating higher mode effects in the pushover analysis so that the efforts for selecting input motions and constructing response spectrum needed in some existing method could be avoided. A case study based on the time history analysis of a irregular steel moment frame showed that the procedure proposed in this study generally outperforms various pushover analysis procedures of ATC-40 and FEMA 273. However, the proposed procedure tended to be conservative as compared with the time history analysis method.