• 제목/요약/키워드: higher order theory

검색결과 828건 처리시간 0.022초

경복궁의 전각 배치에 대한 풍수적 해석 -팔택론의 관점에서 본 북궐도형 분석을 중심으로- (Feng shui analysis on the Layout of the building in Gyeongbokgung Palace -Focus on the analysis of Bukgwoldohyeong in the Paltaekron's point of view-)

  • 이호선;한동수
    • 건축역사연구
    • /
    • 제28권3호
    • /
    • pp.7-18
    • /
    • 2019
  • This study analyzed "Bukgwol Dohyeong (Drawing Plans for the Northern Section of Gyeongbokgung Palace)", which is an important source material for the restoration of the palace, by applying Paltaekron, the geomantic principle of bearings, in order to clarify the building layout principle of Gyeongbokgung Palace. Gyeongbokgung Palace shows the typical geographical conditions that meet the principle of Baesan Imsu (mountain in the back and water in the front) which takes Baegaksan Mountain as the main mountain and the overall layout of the buildings that meet the principle of 'Jeonchak Hugwan (narrow in the front and broad toward inside)' by using the natural topography that meets the principle of 'Jeonjeo Hugo (low in the front and higher toward back).' It is estimated that this layout and arrangement must have been led by geomantic principle of bearings. The analysis of the building layout plan of Gyeongbokgung Palace in the late Joseon Dynasty Period suggests the application of two methods: one is to divide central area from Gwanghwamun Gate to Geoncheongung Hall into eight layers and the other is to apply the bearings of the Eight Trigrams based on the building that becomes the center. As a result, the gate, main hall, and kitchen of all major buildings where the royal family lived are located in the auspicious bearings according to the geomantic principle of bearings while the spaces where people other than the royal family such as those who served the royal family and the officials operated in the palace or the hall that enshrines the ancestors such as Taewonjeong Hall are located in the ominous bearings. Therefore, the buildings of Gyeongbokgung Palace are arranged based on the geomantic principle of bearings.

Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates

  • Esmaeilzadeh, Mostafa;Golmakani, Mohammad Esmaeil;Kadkhodayan, Mehran;Amoozgar, Mohammadreza;Bodaghi, Mahdi
    • Advances in nano research
    • /
    • 제10권2호
    • /
    • pp.151-163
    • /
    • 2021
  • The main target of this study is to investigate nonlinear transient responses of moving polymer nano-size plates fortified by means of Graphene Platelets (GPLs) and resting on a Winkler-Pasternak foundation under a transverse pressure force and a temperature variation. Two graphene spreading forms dispersed through the plate thickness are studied, and the Halpin-Tsai micro-mechanics model is used to obtain the effective Young's modulus. Furthermore, the rule of mixture is employed to calculate the effective mass density and Poisson's ratio. In accordance with the first order shear deformation and von Karman theory for nonlinear systems, the kinematic equations are derived, and then nonlocal strain gradient scheme is used to reflect the effects of nonlocal and strain gradient parameters on small-size objects. Afterwards, a combined approach, kinetic dynamic relaxation method accompanied by Newmark technique, is hired for solving the time-varying equation sets, and Fortran program is developed to generate the numerical results. The accuracy of the current model is verified by comparative studies with available results in the literature. Finally, a parametric study is carried out to explore the effects of GPL's weight fractions and dispersion patterns, edge conditions, softening and hardening factors, the temperature change, the velocity of moving nanoplate and elastic foundation stiffness on the dynamic response of the structure. The result illustrates that the effects of nonlocality and strain gradient parameters are more remarkable in the higher magnitudes of the nanoplate speed.

Vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core: Analytical and experiment study

  • Boussoufi, Aicha;Errouane, Lahouaria;Sereir, Zouaoui;Antunes, Jose V.;Debut, Vincent
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.169-193
    • /
    • 2022
  • By the present paper, both experimental and analytical models have been proposed to study the vibration behavior of partially bio-sourced sandwich panel with orthogonally stiffened core. For a variable mass fraction of Alfa fibers from 5% to 15%, impregnated in a Medapoxy STR resin, this panel were manufactured by molding the orthogonally stiffened core then attached it with both skins. Using simply supported boundary conditions, a free vibration test was carried out using an impact hammer for predicting the natural frequencies, the mode shapes and the damping coefficient versus the fibers content. In addition, an analytical model based on the Higher order Shear Deformation Theory (HSDT) was developed to predict natural frequencies and the mode shapes according to Navier's solution. From the experimental test, we have found that the frequency increases with the increase in the mass fraction of the fibers until 10%. Beyond this fraction, the frequencies give relatively lower values. For the analytical model, variation of the natural frequencies increased considerably with side-to-thickness ratio (a/H) and equivalent thickness of the core to thickness of the face (hs/h). We concluded that, the vibration behavior was significantly influenced by geometrical and mechanical properties of the partially bio-sourced sandwich panel.

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie;Salwa A. Mohamed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.113-130
    • /
    • 2023
  • The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Ibrahim Alfaqih;Mohammed A. Al-Osta;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Saeed Tahir
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.75-85
    • /
    • 2023
  • This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.

Application of Hamilton variational principle for vibration of fluid filled structure

  • Khaled Mohamed Khedher;Muzamal Hussain;Rizwan Munir;Saleh Alsulamy;Ayed Eid Alluqmani
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.401-410
    • /
    • 2023
  • Vibration investigation of fluid-filled three layered cylindrical shells is studied here. A cylindrical shell is immersed in a fluid which is a non-viscous one. Shell motion equations are framed first order shell theory due to Love. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the wave propagation approach procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. It is also exhibited that the effect of frequencies is investigated by varying the different layers with constituent material. The coupled frequencies changes with these layers according to the material formation of fluid-filled FG-CSs. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped (C-C), simply supported-simply supported (SS-SS) frequency curves are higher than that of clamped-simply (C-S) curves. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Computer software MATLAB codes are used to solve the frequency equation for extracting vibrations of fluid-filled.

Study on seismic performance of exterior reinforced concrete beam-column joint under variable loading speeds or axial forces

  • Guoxi Fan;Wantong Xiang;Debin Wang;Zichen Dou;Xiaocheng Tang
    • Earthquakes and Structures
    • /
    • 제26권1호
    • /
    • pp.31-48
    • /
    • 2024
  • In order to get a better understanding of seismic performance of exterior beam-column joint, reciprocating loading tests with variable loading speeds or axial forces were carried out. The main findings indicate that only few cracks exist on the surface of the joint core area, while the plastic hinge region at the beam end is seriously damaged. The damage of the specimen is more serious with the increase of the upper limit of variable axial force. The deflection ductility coefficient of specimen decreases to various degrees after the upper limit of variable axial force increases. In addition, the higher the loading speed is, the lower the deflection ductility coefficient of the specimen is. The stiffness of the specimen decreases as the upper limit of variable axial force or the loading speed increase. Compared to the influence of variable axial force, the influence of the loading speed on the stiffness degradation of the specimen is more obvious. The cumulative energy dissipation and the equivalent viscous damping coefficient of specimen decrease with the increase of loading speed. The influence of variable axial force on the energy dissipation of specimen varies under different loading speeds. Based on the truss model, the biaxial stress criterion, the Rankine criterion, the Kent-Scott-Park model, the equivalent theorem of shearing stress, the softened strut-and-tie model, the controlled slip theory and the proposed equations, a calculation method for the shear capacity is proposed with satisfactory prediction results.

Investigation of the behavior of an RC beam strengthened by external bonding of a porous P-FGM and E-FGM plate in terms of interface stresses

  • Zahira Sadoun;Riadh Bennai;Mokhtar Nebab;Mouloud Dahmane;Hassen Ait Atmane
    • Structural Monitoring and Maintenance
    • /
    • 제10권4호
    • /
    • pp.315-337
    • /
    • 2023
  • During the design phase, it is crucial to determine the interface stresses between the reinforcing plate and the concrete base in order to predict plate end separation failures. In this work, a simple theoretical study of interface shear stresses in beams reinforced with P-FGM and E-FGM plates subjected to an arbitrarily positioned point load, or two symmetrical point loads, was presented using the linear elastic theory. The presence of pores in the reinforcing plate distributed in several forms was also taken into account. For this purpose, we analyze the effects of porosity and its distribution shape on the interracial normal and shear stresses of an FGM beam reinforced with an FRP plate under different types of load. Comparisons of the proposed model with existing analytical solutions in the literature confirm the feasibility and accuracy of this new approach. The influence of different parameters on the interfacial behavior of reinforced concrete beams reinforced with functionally graded porous plates is further examined in this parametric study using the proposed model. From the results obtained in this study, we can say that interface stress is significantly affected by several factors, including the pores present in the reinforcing plate and their distribution shape. Additionally, we can conclude from this study that reinforcement systems with composite plates are very effective in improving the flexural response of reinforced RC beams.

조직의 정보 니즈와 ERP 기능과의 불일치 및 그 대응책에 대한 이해: 조직 메모리 이론을 바탕으로 (Understanding the Mismatch between ERP and Organizational Information Needs and Its Responses: A Study based on Organizational Memory Theory)

  • 정승렬;배억호
    • Asia pacific journal of information systems
    • /
    • 제22권2호
    • /
    • pp.21-38
    • /
    • 2012
  • Until recently, successful implementation of ERP systems has been a popular topic among ERP researchers, who have attempted to identify its various contributing factors. None of these efforts, however, explicitly recognize the need to identify disparities that can exist between organizational information requirements and ERP systems. Since ERP systems are in fact "packages" -that is, software programs developed by independent software vendors for sale to organizations that use them-they are designed to meet the general needs of numerous organizations, rather than the unique needs of a particular organization, as is the case with custom-developed software. By adopting standard packages, organizations can substantially reduce many of the potential implementation risks commonly associated with custom-developed software. However, it is also true that the nature of the package itself could be a risk factor as the features and functions of the ERP systems may not completely comply with a particular organization's informational requirements. In this study, based on the organizational memory mismatch perspective that was derived from organizational memory theory and cognitive dissonance theory, we define the nature of disparities, which we call "mismatches," and propose that the mismatch between organizational information requirements and ERP systems is one of the primary determinants in the successful implementation of ERP systems. Furthermore, we suggest that customization efforts as a coping strategy for mismatches can play a significant role in increasing the possibilities of success. In order to examine the contention we propose in this study, we employed a survey-based field study of ERP project team members, resulting in a total of 77 responses. The results of this study show that, as anticipated from the organizational memory mismatch perspective, the mismatch between organizational information requirements and ERP systems makes a significantly negative impact on the implementation success of ERP systems. This finding confirms our hypothesis that the more mismatch there is, the more difficult successful ERP implementation is, and thus requires more attention to be drawn to mismatch as a major failure source in ERP implementation. This study also found that as a coping strategy on mismatch, the effects of customization are significant. In other words, utilizing the appropriate customization method could lead to the implementation success of ERP systems. This is somewhat interesting because it runs counter to the argument of some literature and ERP vendors that minimized customization (or even the lack thereof) is required for successful ERP implementation. In many ERP projects, there is a tendency among ERP developers to adopt default ERP functions without any customization, adhering to the slogan of "the introduction of best practices." However, this study asserts that we cannot expect successful implementation if we don't attempt to customize ERP systems when mismatches exist. For a more detailed analysis, we identified three types of mismatches-Non-ERP, Non-Procedure, and Hybrid. Among these, only Non-ERP mismatches (a situation in which ERP systems cannot support the existing information needs that are currently fulfilled) were found to have a direct influence on the implementation of ERP systems. Neither Non-Procedure nor Hybrid mismatches were found to have significant impact in the ERP context. These findings provide meaningful insights since they could serve as the basis for discussing how the ERP implementation process should be defined and what activities should be included in the implementation process. They show that ERP developers may not want to include organizational (or business processes) changes in the implementation process, suggesting that doing so could lead to failed implementation. And in fact, this suggestion eventually turned out to be true when we found that the application of process customization led to higher possibilities of failure. From these discussions, we are convinced that Non-ERP is the only type of mismatch we need to focus on during the implementation process, implying that organizational changes must be made before, rather than during, the implementation process. Finally, this study found that among the various customization approaches, bolt-on development methods in particular seemed to have significantly positive effects. Interestingly again, this finding is not in the same line of thought as that of the vendors in the ERP industry. The vendors' recommendations are to apply as many best practices as possible, thereby resulting in the minimization of customization and utilization of bolt-on development methods. They particularly advise against changing the source code and rather recommend employing, when necessary, the method of programming additional software code using the computer language of the vendor. As previously stated, however, our study found active customization, especially bolt-on development methods, to have positive effects on ERP, and found source code changes in particular to have the most significant effects. Moreover, our study found programming additional software to be ineffective, suggesting there is much difference between ERP developers and vendors in viewpoints and strategies toward ERP customization. In summary, mismatches are inherent in the ERP implementation context and play an important role in determining its success. Considering the significance of mismatches, this study proposes a new model for successful ERP implementation, developed from the organizational memory mismatch perspective, and provides many insights by empirically confirming the model's usefulness.

  • PDF