• Title/Summary/Keyword: higher order beam model

Search Result 117, Processing Time 0.022 seconds

Advanced 1D Structural Models for Flutter Analysis of Lifting Surfaces

  • Petrolo, Marco
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.199-209
    • /
    • 2012
  • An advanced aeroelastic formulation for flutter analyses is presented in this paper. Refined 1D structural models were coupled with the doublet lattice method, and the g-method was used for flutter analyses. Structural models were developed in the framework of the Carrera Unified Formulation (CUF). Higher-order 1D structural models were obtained by using Taylor-like expansions of the cross-section displacement field of the structure. The order (N) of the expansion was considered as a free parameter since it can be arbitrarily chosen as an input of the analysis. Convergence studies on the order of the structural model can be straightforwardly conducted in order to establish the proper 1D structural model for a given problem. Flutter analyses were conducted on several wing configurations and the results were compared to those from literature. Results show the enhanced capabilities of CUF 1D in dealing with the flutter analysis of typical wing structures with high accuracy and low computational costs.

Evaluation of the Beam Quality of Intraoral X-ray Equipments Using Intraoral Standard Films (구내 표준 방사선사진을 이용한 구내방사선촬영기의 선질 평가)

  • Lee Sang-Sub;Kwon Hyok-Rak;Sim Woo-Hyoun;Oh Seung-Hyoun;Lee Ji-Youn;Jeon Kug-Jin;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.30 no.3
    • /
    • pp.183-188
    • /
    • 2000
  • Purpose: This study was to evaluate the beam quality of intraoral X-ray equipments used at Yonsei University Dental Hospital (YUDH) using the half value layer (HVL) and the characteristic curve of intraoral standard X-ray film. Materials and Methods : The study was done using the intraoral X -ray equipments used at each clinical department at YUDH. Aluminum filter was used to determine the HVL. Intraoral standard film was used to get the characteristic curve of each intraoral X-ray equipment. Results: Most of the HVLs of intraoral X-ray equipments were higher than the least recommended thickness, but the REX 601 model used at the operative dentistry department and the X-707 model used at the pediatric dentistry department had HVLs lower than the recommended thickness. The slopes of the characteristic curves of films taken using the PANP AS 601 model and REX 601 model at operative dentistry department, the X-70S model of prosthodontic dentistry department, and the REX 601 model at the student clinic were relatively low. Conclusion: HVL and the characteristic curve of X-ray film can be used to evaluate the beam quality of intraoral X-ray equipment. In order to get the best X-ray films with the least radiation exposure to patients and best diagnostic information in clinical dentistry, X -ray equipment should be managed in the planned and organized fashion.

  • PDF

Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams

  • Lal, Achchhe;Markad, Kanif
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.501-514
    • /
    • 2018
  • The paper presents the thermo-mechanically induced non-linear response of multiwall carbon nanotube reinforced laminated composite beam (MWCNTRCB) supported by elastic foundation using higher order shear deformation theory and von-Karman non-linear kinematics. The elastic properties of MWCNT reinforced composites are evaluated using Halpin-Tsai model by considering MWCNT reinforced polymer matrix as new matrix by dispersing in it and then reinforced with E-glass fiber in an orthotropic manner. The laminated beam is supported by Pasternak elastic foundation with Winkler cubic nonlinearity. A generalized static analysis is formulated using finite element method (FEM) through principle of minimum potential energy approach.

A novel approach to damage localisation based on bispectral analysis and neural network

  • Civera, M.;Fragonara, L. Zanotti;Surace, C.
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.669-682
    • /
    • 2017
  • The normalised version of bispectrum, the so-called bicoherence, has often proved a reliable method of damage detection on engineering applications. Indeed, higher-order spectral analysis (HOSA) has the advantage of being able to detect non-linearity in the structural dynamic response while being insensitive to ambient vibrations. Skewness in the response may be easily spotted and related to damage conditions, as the majority of common faults and cracks shows bilinear effects. The present study tries to extend the application of HOSA to damage localisation, resorting to a neural network based classification algorithm. In order to validate the approach, a non-linear finite element model of a 4-meters-long cantilever beam has been built. This model could be seen as a first generic concept of more complex structural systems, such as aircraft wings, wind turbine blades, etc. The main aim of the study is to train a Neural Network (NN) able to classify different damage locations, when fed with bispectra. These are computed using the dynamic response of the FE nonlinear model to random noise excitation.

Investigations on state estimation of smart structure systems

  • Arunshankar, J.
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2020
  • This paper aims at enlightening the properties, computational and implementation issues related to Kalman filter based state estimation algorithms and sliding mode observers, by applying them for estimating the states of a smart structure system. The Kalman based estimators considered in this work are Kalman filter and information filter and, the sliding mode observers considered are Utkin observer and higher order sliding mode observer. A fourth order linear time invariant model of a piezo actuated beam is used in this work. This structure is embedded with four number of piezo patches, of which two act as sensors, one as disturbance actuator and the other as control actuator. The performance of the state estimation algorithms is evaluated through simulation, for the first two vibrating modes of the piezo actuated structure, when the structure is maintained at first mode and second mode resonance.

Effects of Pressure Ratio on Population Inversion in a DF Chemical Laser with Concurrent Lasing

  • Park, Jun-Sung;Baek, Seung-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.287-293
    • /
    • 2004
  • A numerical simulation is presented for investigating the effects of pressure ratio of $D_2$ injector to supersonic nozzle on the population inversion in the DF chemical laser cavity, while a lasing concurrently takes place. The laser beam is generated between the mirrors in the cavity and it is important to obtain stronger population inversion and more uniform distribution of the excited molecules in the laser cavity in order to produce high power laser beam with good quality. In this study, these phenomena are investigated by means of analyzing the distributions of the DF excited molecules and the F atom used as an oxidant, while simultaneously estimating the maximum small signal and saturated gains and power in the DF chemical laser cavity. For the numerical solution, an 11-species (including DF molecules in various excited states of energies), 32-step chemistry model is adopted for the chemical reaction of the DF chemical laser system. The results are discussed by comparison with two $D_2$injector pressure cases; 192 torr and 388.64 torr. Major results reveal that in the resonator, stronger population inversions occur in the all transitions except DF(1)-DF(0), when the $D_2$injection pressure is lower. But, the higher $D_2$injection pressure provides a favorable condition for DF(1)-DF(0) transition to generate the higher power laser beam. In other words, as the pressure of $D_2$injector increases, the maximum small signal gain in the $V_{1-0}$ transition, which is in charge of generating most of laser power, becomes higher. Therefore, the total laser beam power becomes higher.r.

  • PDF

Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load

  • Alazwari, Mashhour A.;Esen, Ismail;Abdelrahman, Alaa A.;Abdraboh, Azza M.;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.231-251
    • /
    • 2022
  • Dynamic behavior of temperature-dependent Reddy functionally graded (RFG) nanobeam subjected to thermomagnetic effects under the action of moving point load is carried out in the present work. Both symmetric and sigmoid functionally graded material distributions throughout the beam thickness are considered. To consider the significance of strain-stress gradient field, a material length scale parameter (LSP) is introduced while the significance of nonlocal elastic stress field is considered by introducing a nonlocal parameter (NP). In the framework of the nonlocal strain gradient theory (NSGT), the dynamic equations of motion are derived through Hamilton's principle. Navier approach is employed to solve the resulting equations of motion of the functionally graded (FG) nanoscale beam. The developed model is verified and compared with the available previous results and good agreement is observed. Effects of through-thickness variation of FG material distribution, beam aspect ratio, temperature variation, and magnetic field as well as the size-dependent parameters on the dynamic behavior are investigated. Introduction of the magnetic effect creates a hardening effect; therefore, higher values of natural frequencies are obtained while smaller values of the transverse deflections are produced. The obtained results can be useful as reference solutions for future dynamic and control analysis of FG nanobeams reinforced nanocomposites under thermomagnetic effects.

Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.93-112
    • /
    • 2018
  • An analytical solution of the buckling governing equations of functionally graded piezoelectric (FGP) nanobeams obtained by using a developed third-order shear deformation theory is presented. Electro-mechanical properties of FGP nanobeam are supposed to change continuously in the thickness direction based on power-law model. To capture the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of a FG nanobeams made of piezoelectric materials are obtained and they are solved using Navier-type analytical solution. Results are provided to show the effect of different external electric voltage, power-law index, nonlocal parameter and slenderness ratio on the buckling loads of the size-dependent FGP nanobeams. The accuracy of the present model is verified by comparing it with nonlocal Timoshenko FG beams. So, this study makes the first attempt for analyzing buckling behavior of higher order shear deformable FGP nanobeams.

A computational shear displacement model for vibrational analysis of functionally graded beams with porosities

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.369-384
    • /
    • 2015
  • This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a simple displacement field based on higher order shear deformation theory is implemented. The proposed theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. By employing the Hamilton's principle, governing equations of motion for coupled axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing some of the present results with those of the first-order and the other higher-order theories reported in the literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

A new higher order shear and normal deformation theory for functionally graded beams

  • Meradjah, Mustapha;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.793-809
    • /
    • 2015
  • In this scientific work, constructing of a novel shear deformation beam model including the stretching effect is of concern for flexural and free vibration responses of functionally graded beams. The particularity of this model is that, in addition to considering the transverse shear deformation and the stretching effect, the zero transverse shear stress condition on the beam surface is assured without introducing the shear correction parameter. By employing the Hamilton's principle together with the concept of the neutral axe's position for such beams, the equations of motion are obtained. Some examples are performed to demonstrate the effects of changing gradients, thickness stretching, and thickness to length ratios on the bending and vibration of functionally graded beams.