• Title/Summary/Keyword: high-velocity jet

Search Result 220, Processing Time 0.023 seconds

Au Experimental Study on the Aerodynamic Noise by a Circular Jet Impinging on a Plate (평판에 충돌하는 원형분류의 공력소음에 관한 실험적 연구)

  • 이동훈;권영필;한희갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.71-79
    • /
    • 1997
  • The objective of this study is to investigate experimentally the effect of surface conditions of the plate on the impinging jet noise. The experimental results about the spectrum, the sound pressure level and the directivity are pressented and discussed in relation with the surface conditions. Regardless of the surface conditions, the pure tones of high level are generated at the same frequency band and the overall sound power level of impinging jets is much higher than that of the free jet. However, the velocity dependence of the sound pressure level and the directivity are different between smooth surfaces and rough surfaces. The dependence of sound pressure level on the jet velocity shows that the smooth surface generates quadrupole-type sound like free jets. However, the perforated or the rough surface radiates sound power exactly proportional to the sixth power of the jet velocity, indicating that the source is fixed dipole type. The directivities of 1/3 octave band sound pressure level for both the free and impinging jet show the peak directivity at 115$^\circ$ upstream, probably due to the refraction associated with velocity gradient.

  • PDF

Effects of Inner Jet Injection on Particle Deposition in the Annular Modified Chemical Vapor Deposition Process Using Concentric Tubes (환상형원관을 사용하는 수정된 화학증착(MCVD)방법에서 내부 제트분사가 입자부착에 미치는 영향)

  • 최만수;박경순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.212-222
    • /
    • 1994
  • In the annular Modified Chemical Vapor Deposition process using two concentric tubes, the inner tube is heated to maintain high temperature gradients to have high thermophoretic force which can increase particle deposition efficiency. However, higher axial velocity in a narrow gap between inner and outer tubes can result in a longer tapered entry length. In the present paper, a new concept using an annular jet from the inner tube is presented and shown to significantly reduce the tapered entry length with maintaining high efficiency. Effects of a jet injection on heat transfer, fluid flow and particle deposition have been studied. Of particular interests are the effects of jet velocity, jet location and temperature on the deposition efficiency and tapered length . Torch heating effects from both the previous and present passes are included and the effect of surface radiation between inner and outer tubes is also considered.

Control of Impinging Jet Heat Transfer with Mesh Screens (Mesh 스크린을 이용한 충돌제트 열전달 제어에 관한 연구)

  • Cho, Joung-Won;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.267-271
    • /
    • 2000
  • The local heat transfer rate of an axisymmetric submerged air jet impinging on normal to a heated flat plate was investigated experimentally with varying solidity of mesh screen. The mean velocity and turbulent Intensity profiles of streamwise velocity component were measured using a hot-wire anemometry. The temperature distribution on the heated flat surface was measured with thermocouples. The screen installed in front of the nozzle exit(behind of 35mm) modify the jet flow structure and local heat transfer characteristics. For higher solidity screen, turbulence intensity at core lesion is high and increases the local heat transfer rate at nozzle-to-plate spacings(L/D<6). For larger nozzle-to-plate spacings(L/D>6), however, the turbulent Intensities of all screens tested in this study approach to an asymptotic curve, but the small mean velocity at the core region reduces the local heat transfer rate for high solidity screens.

  • PDF

Temporally developing behavior of an evolving jet diffusion flame (전개확산제트화염의 시간 발달 거동)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.486-493
    • /
    • 1997
  • Experimental investigations on the comparison of developments between transient jets and evolving jet diffusion flames have been made in initial injection period. To achieve this experiment, an ignition technique using a residual flame as the ignition source is devised. High speed Schlieren visualizations, and measurements including jet tip penetration velocities and jet widths of the primary vortex are employed to examine the developing processes for several flow conditions. It is seen that the developing behaviors in the presence of flame are greatly different from those in transient jet, and thus the flow characteristics in the transient part are also modified. The discernible differences are shown to consist of the delay of the rollup of the primary vortex, the faster spreading after the rollup due to exothermic expansion, and the survival of only a primary vortex. The growth of primary vortex in the transient jet is properly explained through an impulsively started laminar vortex prior to the interaction. It is also found that the jet tip penetration velocity varies with elapsed time and an increase in Res gives rise to a higher tip penetration velocity.

Modeling of the Velocity of the Ceiling Jet Front (연기선단의 전파속도 모델에 관한 연구)

  • 김명배;한용식
    • Fire Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.91-95
    • /
    • 2001
  • Decays of the ceiling jet front velocity under a circular ceiling are investigated. To simulate the ceiling jet in fires He and $N_2$gas were injected from a nozzle to the center of the ceiling. The jet fronts in the form of turbulent eddies were traced by a high-speed camera system. The instantaneous locations of the front were obtained from visual readings of visualized front, and the radial velocity was calculated from the information of the time and the location with respect to the front. The similarity and dimensional analysis were also carried out to reveal the relationship between the velocity decay and the radial distance. It was shown that the radial velocity of the front was inversely proportional to the radial distance in the fully developed region from the experimental results and the theoretical analysis.

  • PDF

Flow Characteristics of Sweeping Jet Issued by a Feedback-free Fluidic Oscillator (피드백이 없는 유체진동기에서 분사되는 Sweeping jet의 유동 특성)

  • Nam, Sanghyun;Kim, Donguk;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2020
  • This paper presents flow characteristics of a sweeping jet issued by a feedback-free fluidic oscillator. Overall flow characteristics of feedback-free sweeping jet (FFSJ) were analyzed using flow visualization. The feedback-free sweeping jet has a sinusoidal external flow pattern. The oscillating frequency of the FFSJ is three times higher than that of a conventional sweeping jet at the same Reynolds number. Flow structure and turbulence characteristics were investigated using time-resolved particle image velocimetry (TR-PIV). In instantaneous velocity fields, the flow did not stay at ends but changed the direction continuously in contrast to the conventional sweeping jet. Velocity distributions at each plane which were extracted from mean velocity field has Gaussian distribution, which is similar with a circular jet. The sweep angles were constant as 45° at all Reynolds numbers in the high flow rate regime.

Theoretical Analysis and Experimental Characterization of DoD Metal-Jet System (DoD 메탈젯 시스템의 이론적 해석 및 실험적 분석)

  • Lee, Taik-Min;Kang, Tae-Goo;Yang, Jeong-Soon;Jo, Jeong-Dai;Kim, Kwang-Young;Choi, Byung-Oh;Kim, Dong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.11-17
    • /
    • 2007
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. The theoretical analysis of the metal-jet nozzle system is derived by using electro-mechanical analogy. Based on the theoretical analysis results, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about 65 $\mu$m $\sim$ 70 $\mu$m, 145p1 $\sim$ 180 pl and 4m/s, which shows quite good agreement with the theoretical analysis results of the 75 $\mu$m-diameter and 220 pl-volume of droplet. In comparison with the experimental result, the errors of diameter and volume are 7% $\sim$ 13% and 18 $\sim$ 34%, respectively.

Measurement of turbulent jet flow using dynamic PIV technique (Dynamic PIV를 이용한 난류 제트유동 해석)

  • Lee Sang-Joon;Jang Young-Gil;Kim Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.36-39
    • /
    • 2005
  • Information on temporal evolution of whole velocity fields is essential for physical understanding of a complicated turbulent flow and was obtainable using dynamic PIV because of advances of high-speed imaging technique, laser and electronics. A dynamic PIV systme consists of a high-speed CMOS camera having $1K\times1K$ pixels resolution at 1 KHz and a high-repetition Nd:Yag pulse laser. In order to validate its performance, the dynamic PIV system was applied to a turbulent jet whose Reynolds number is about 3000. The particle images of $1024\times512$ pixels were captured at a sampling rate of 4 KHz. The dynamic PIV system measured successfully the temporal evolution of instantaneous velocity fields of the turbulent jet, from which spectral analysis of turbulent structure was also feasible.

  • PDF

Structures and Energetics of Flows in Ultra-relativistic Jets

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.36.3-36.3
    • /
    • 2021
  • We study ultra-relativistic jets on several tens kpc scales through three-dimensional relativistic hydrodynamic (RHD) simulations using a new RHD code based on the weighted essentially non-oscillatory (WENO) scheme. Utilizing the high-resolution and high-accuracy capabilities of the new code, we especially explore the structures and energetics of nonlinear flows, such as shocks, turbulence, velocity shear in different parts of jets. We find that the mildly relativistic shocks which form in the jet backflow are most effective for the shock dissipation of the jet energy, while the turbulent dissipation is largest either in the backflow or in the shocked ICM, depending on the jet parameter. The velocity shear is strongest across the jet flow to the cocoon boundary. Our results should have important implications for the studies of high-energy cosmic-ray production in radio galaxies.

  • PDF

The effect of gas density on the drop trajectory and drop size distribution in high speed gas stream (고속기류에 분사된 액적궤적 및 입경분포에 미치는 주위 기체밀도의 영향)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • High velocity, gas-assisted liquid drop trajectories were investigated under well-controlled experimental conditions at elevated gas densities and room temperature. A monodisperse stream of drops which are generated by a vibrating-orifice drop generator were injected into a transverse high velocity gas stream. The gas density and air jet velocity were adjusted independently to keep the Weber numbers constant. The Weber numbers studied were 72, 148, 270, 532. The range of experimental conditions included studied the three drop breakup regimes previously referred as bag, stretching/thinning and catastrophic breakup regimes. High-magnification photography and conventional spray field photographs were taken to study the microscopic breakup mechanisms and the drop trajectories in high velocity gas flow fields, respectively. The parent drop trajectories were affected by the gas density and the gas jet velocities and do not show similarity with respect to the either Weber or the Reynolds number, as expected.

  • PDF