• Title/Summary/Keyword: high-throughput rna sequencing

Search Result 75, Processing Time 0.02 seconds

Effect of feeding raw potato starch on the composition dynamics of the piglet intestinal microbiome

  • Yi, Seung-Won;Lee, Han Gyu;So, Kyoung-Min;Kim, Eunju;Jung, Young-Hun;Kim, Minji;Jeong, Jin Young;Kim, Ki Hyun;Oem, Jae-Ku;Hur, Tai-Young;Oh, Sang-Ik
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1698-1710
    • /
    • 2022
  • Objective: Raw potato starch (RPS) is resistant to digestion, escapes absorption, and is metabolized by intestinal microflora in the large intestine and acts as their energy source. In this study, we compared the effect of different concentrations of RPS on the intestinal bacterial community of weaned piglets. Methods: Male weaned piglets (25-days-old, 7.03±0.49 kg) were either fed a corn/soybean-based control diet (CON, n = 6) or two treatment diets supplemented with 5% RPS (RPS5, n = 4) or 10% RPS (RPS10, n = 4) for 20 days and their fecal samples were collected. The day 0 and 20 samples were analyzed using a 16S rRNA gene sequencing technology, followed by total genomic DNA extraction, library construction, and high-throughput sequencing. After statistical analysis, five phyla and 45 genera accounting for over 0.5% of the reads in any of the three groups were further analyzed. Furthermore, short-chain fatty acids (SCFAs) in the day 20 fecal samples were analyzed using gas chromatography. Results: Significant changes were not observed in the bacterial composition at the phylum level even after 20 d post feeding (dpf); however, the abundance of Intestinimonas and Barnesiella decreased in both RPS treatment groups compared to the CON group. Consumption of 5% RPS increased the abundance of Roseburia (p<0.05) and decreased the abundance of Clostridium (p<0.01) and Mediterraneibacter (p< 0.05). In contrast, consumption of 10% RPS increased the abundance of Olsenella (p<0.05) and decreased the abundance of Campylobacter (p<0.05), Kineothrix (p<0.05), Paraprevotella (p<0.05), and Vallitalea (p<0.05). Additionally, acetate (p<0.01), butyrate (p<0.05), valerate (p = 0.01), and total SCFAs (p = 0.01) were upregulated in the RPS5 treatment group Conclusion: Feeding 5% RPS altered bacterial community composition and promoted gut health in weaned piglets. Thus, resistant starch as a feed additive may prevent diarrhea in piglets during weaning.

Association study and expression analysis of olfactomedin like 3 gene related to meat quality, carcass characteristics, retail meat cut, and fatty acid composition in sheep

  • Listyarini, Kasita;Sumantri, Cece;Rahayu, Sri;Uddin, Muhammad Jasim;Gunawan, Asep
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1489-1498
    • /
    • 2022
  • Objective: The objective of this study was to identify polymorphism in olfactomedin like 3 (OLFML3) gene, and association analysis with meat quality, carcass characteristics, retail meat cut, and fatty acid composition in sheep, and expression quantification of OLFML3 gene in phenotypically divergent sheep. Methods: A total of 328 rams at the age of 10 to 12 months with an average body weight of 26.13 kg were used. A novel polymorphism was identified using high-throughput sequencing in sheep and genotyping of OLFML3 polymorphism was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Among 328 rams, 100 rams representing various sheep genotypes were used for association study and proc general linear model was used to analyse association between genotypes and phenotypic traits. Quantitative real-time polymerase chain reaction (qRT-PCR) was used for the expression analysis of OLFML3 mRNA in phenotypically divergent sheep population. Results: The findings revealed a novel polymorphism in the OLFML3 gene (g.90317673 C>T). The OLFML3 gene revealed three genotypes: CC, CT, and TT. The single nucleotide polymorphism (SNP) was found to be significantly (p<0.05) associated with meat quality traits such as tenderness and cooking loss; carcass characteristics such as carcass length; retail meat cut such as pelvic fat in leg, intramuscular fat in loin and tenderloin, muscle in flank and shank; fatty acids composition such as tridecanoic acid (C13:0), palmitoleic acid (C16:1), heptadecanoic acid (C17:0), ginkgolic acid (C17:1), linolenic acid (C18:3n3), arachidic acid (C20:0), eicosenoic acid (C20:1), arachidonic acid (C20:4n6), heneicosylic acid (C21:0), and nervonic acid (C24:1). The TT genotype was associated with higher level of meat quality, carcass characteristics, retail meat cut, and some fatty acids composition. However, the mRNA expression analysis was not different among genotypes. Conclusion: The OLFML3 gene could be a potential putative candidate for selecting higher quality sheep meat, carcass characteristics, retail meat cuts, and fatty acid composition in sheep.

Differential Impacts on Bacterial Composition and Abundance in Rhizosphere Compartments between Al-Tolerant and Al-Sensitive Soybean Genotypes in Acidic Soil

  • Wen, Zhong-Ling;Yang, Min-Kai;Fazal, Aliya;Liao, Yong-Hui;Cheng, Lin-Run;Hua, Xiao-Mei;Hu, Dong-Qing;Shi, Ji-Sen;Yang, Rong-Wu;Lu, Gui-Hua;Qi, Jin-Liang;Hong, Zhi;Qian, Qiu-Ping;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1169-1179
    • /
    • 2020
  • In this study, two soybean genotypes, i.e., aluminum-tolerant Baxi 10 (BX10) and aluminumsensitive Bendi 2 (BD2), were used as plant materials and acidic red soil was used as growth medium. The soil layers from the inside to the outside of the root are: rhizospheric soil after washing (WRH), rhizospheric soil after brushing (BRH) and rhizospheric soil at two sides (SRH), respectively. The rhizosphere bacterial communities were analyzed by high-throughput sequencing of V4 hypervariable regions of 16S rRNA gene amplicons via Illumina MiSeq. The results of alpha diversity analysis showed that the BRH and SRH of BX10 were significantly lower in community richness than that of BD2, while the WRH exhibited no significant difference between BX10 and BD2. Among the three sampling compartments of the same soybean genotype, WRH had the lowest community richness and diversity while showing the highest coverage. Beta diversity analysis results displayed no significant difference for any compartment between the two genotypes, or among the three different sampling compartments for any same soybean genotype. However, the relative abundance of major bacterial taxa, specifically nitrogen-fixing and/or aluminum-tolerant bacteria, was significantly different in the compartments of the BRH and/or SRH at phylum and genus levels, indicating genotype-dependent variations in rhizosphere bacterial communities. Strikingly, as compared with BRH and SRH, the WRH within the same genotype (BX10 or BD2) always had an enrichment effect on rhizosphere bacteria associated with nitrogen fixation.

Comparison of Microbial Diversity and Composition in the Jejunum and Colon of Alcohol-Dependent Rats

  • Fan, Yang;Ya-E, Zhao;Ji-dong, Wei;Yu-fan, Lu;Ying, Zhang;Ya-lun, Sun;Meng-Yu, Ma;Rui-ling, Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1883-1895
    • /
    • 2018
  • Alcohol dependence is a global public health problem, yet the mechanisms of alcohol dependence are incompletely understood. The traditional view has been that ethanol alters various neurotransmitters and their receptors in the brain and causes the addiction. However, an increasing amount of experimental evidence suggests that gut microbiota also influence brain functions via gut-to-brain interactions, and may therefore induce the development of alcohol use disorders. In this study, a rat model of alcohol dependence and withdrawal was employed, the gut microbiota composition was analyzed by high-throughput 16S rRNA gene sequencing, and the metagenome function was predicted by PICRUSt software. The results suggested that chronic alcohol consumption did not significantly alter the diversity and richness of gut microbiota in the jejunum and colon, but rather markedly changed the microbiota composition structure in the colon. The phyla Bacteroidetes and eight genera including Bacteroidales S24-7, Ruminococcaceae, Parabacteroides, Butyricimonas, et al were drastically increased, however the genus Lactobacillus and gauvreauii in the colon were significantly decreased in the alcohol dependence group compared with the withdrawal and control groups. The microbial functional prediction analysis revealed that the proportions of amino acid metabolism, polyketide sugar unit biosynthesis and peroxisome were significantly increased in the AD group. This study demonstrated that chronic alcohol consumption has a dramatic effect on the microbiota composition structure in the colon but few effects on the jejunum. Inducement of colonic microbiota dysbiosis due to alcohol abuse seems to be a factor of alcohol dependence, which suggests that modulating colonic microbiota composition might be a potentially new target for treating alcohol addiction.

Simotang Alleviates the Gastrointestinal Side Effects of Chemotherapy by Altering Gut Microbiota

  • Deng, Lijing;Zhou, Xingyi;Lan, Zhifang;Tang, Kairui;Zhu, Xiaoxu;Mo, Xiaowei;Zhao, Zongyao;Zhao, Zhiqiang;Wu, Mansi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.405-418
    • /
    • 2022
  • Simotang oral liquid (SMT) is a traditional Chinese medicine (TCM) consisting of four natural plants and is used to alleviate gastrointestinal side effects after chemotherapy and functional dyspepsia (FD). However, the mechanism by which SMT helps cure these gastrointestinal diseases is still unknown. Here, we discovered that SMT could alleviate gastrointestinal side effects after chemotherapy by altering gut microbiota. C57BL/6J mice were treated with cisplatin (DDP) and SMT, and biological samples were collected. Pathological changes in the small intestine were observed, and the intestinal injury score was assessed. The expression levels of the inflammatory factors IL-1β and IL-6 and the adhesive factors Occludin and ZO-1 in mouse blood or small intestine tissue were also detected. Moreover, the gut microbiota was analyzed by high-throughput sequencing of 16S rRNA amplicons. SMT was found to effectively reduce gastrointestinal mucositis after DDP injection, which lowered inflammation and tightened the intestinal epithelial cells. Gut microbiota analysis showed that the abundance of the anti-inflammatory microbiota was downregulated and that the inflammatory microbiota was upregulated in DDP-treated mice. SMT upregulated anti-inflammatory and anticancer microbiota abundance, while the inflammatory microbiota was downregulated. An antibiotic cocktail (ABX) was also used to delete mice gut microbiota to test the importance of gut microbiota, and we found that SMT could not alleviate gastrointestinal mucositis after DDP injection, showing that gut microbiota might be an important mediator of SMT treatment. Our study provides evidence that SMT might moderate gastrointestinal mucositis after chemotherapy by altering gut microbiota.