• 제목/요약/키워드: high-temperature shift

검색결과 267건 처리시간 0.03초

고온수성가스전이반응 적용을 위한 Cu-CeO2-MgO 촉매의 제조방법 최적화 (An Optimization of Synthesis Method for High-temperature Water-gas Shift Reaction over Cu-CeO2-MgO Catalyst)

  • 전이정;김창현;심재오
    • 청정기술
    • /
    • 제29권4호
    • /
    • pp.321-326
    • /
    • 2023
  • 최근 탄소중립과 관련하여 연소 시 이산화탄소 배출이 없어 청정한 수소에너지에 대한 관심이 증가하고 있다. 이에 따라 수소 생산에 관련된 연구가 계속되고 있으며 본 연구에서는 폐기물을 처리함과 동시에 고순도 수소를 생산하기 위해 폐기물 유래 합성가스를 수성가스전이반응에 적용하였다. 마그네슘을 세륨과 함께 지지체로 사용하여 고온수성가스전이(HT-WGS)반응에서 촉매의 활성을 향상시키고자 하였다. HT-WGS 반응의 활성물질로 구리를 사용해 Cu-CeO2-MgO 촉매를 제조하였으며, 제조방법에 따른 촉매활성 연구를 진행하였다. HT-WGS 반응 결과 함침법으로 제조된 Cu-CeO2-MgO 촉매가 가장 높은 활성을 보였으며, 이는 가장 높은 산소 저장능과 많은 활성 Cu 종을 가지는 특성에 기인한 결과이다.

Estimating potential range shift of some wild bees in response to climate change scenarios in northwestern regions of Iran

  • Rahimi, Ehsan;Barghjelveh, Shahindokht;Dong, Pinliang
    • Journal of Ecology and Environment
    • /
    • 제45권3호
    • /
    • pp.130-142
    • /
    • 2021
  • Background: Climate change is occurring rapidly around the world, and is predicted to have a large impact on biodiversity. Various studies have shown that climate change can alter the geographical distribution of wild bees. As climate change affects the species distribution and causes range shift, the degree of range shift and the quality of the habitats are becoming more important for securing the species diversity. In addition, those pollinator insects are contributing not only to shaping the natural ecosystem but also to increased crop production. The distributional and habitat quality changes of wild bees are of utmost importance in the climate change era. This study aims to investigate the impact of climate change on distributional and habitat quality changes of five wild bees in northwestern regions of Iran under two representative concentration pathway scenarios (RCP 4.5 and RCP 8.5). We used species distribution models to predict the potential range shift of these species in the year 2070. Result: The effects of climate change on different species are different, and the increase in temperature mainly expands the distribution ranges of wild bees, except for one species that is estimated to have a reduced potential range. Therefore, the increase in temperature would force wild bees to shift to higher latitudes. There was also significant uncertainty in the use of different models and the number of environmental layers employed in the modeling of habitat suitability. Conclusion: The increase in temperature caused the expansion of species distribution and wider areas would be available to the studied species in the future. However, not all of this possible range may include high-quality habitats, and wild bees may limit their niche to suitable habitats. On the other hand, the movement of species to higher latitudes will cause a mismatch between farms and suitable areas for wild bees, and as a result, farmers will face a shortage of pollination from wild bees. We suggest that farmers in these areas be aware of the effects of climate change on agricultural production and consider the use of managed bees in the future.

RGB형 LED Backlight의 전류 및 온도 변화에 따른 특성 분석 (Characteristic Analysis of RGB-LED Backlight for Current and Temperature Variations)

  • 임수현;임정규;신휘범;정세교;신민재;손승걸
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.244-246
    • /
    • 2007
  • The LCD backlight technique using light-emitting diode(LED) has been studied in the recent backlight market. The white light is need for LCD backlight and it is generally implemented by combining the RGB-LEDs to obtain the high brightness. However, RGB-LEDs have different color characteristics for the current and temperature variations, which results in the color shift problem. The color shift characteristics of RGB-LEDs for the current and temperature variations are investigated in this paper. This result can be used to control the color of backlight system using RGB-LEDs.

  • PDF

Growth environments depends interface and surface characteristics of yttria-stabilized zirconia thin films

  • 배종성;박수환;박상신;황정식;박성균
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.309-309
    • /
    • 2011
  • There have been large research activities on the high quality oxide films for the realization oxide based electronics. However, the interface interdiffusion prohibits achieving high quality oxide films, when the oxide films are grown on non-oxide substrates. In the case of Si substrates, there exist lattice mismatch and interface interdiffusion when oxide films deposited on direct Si surface. In this presentation, we report the interface characteristics of yttria-stabilized zirconia films grown on silicon substrates. From x-ray reflectivity analysis we found that the film thickness and interface roughness decreased as the growth temperature increased, indicating that the growth mechanism varies and the chemical reaction is limited to the interface as the growth condition varies. Furthermore, the packing density of the film increased as the growth temperature increased and the film thickness decreased. X-ray photoelectron spectroscopy analysis of very thin films revealed that the amount of chemical shift increased as the growth temperature increased. Intriguingly, the direction of the chemical shift of Zr was opposite to that of Si due to the second nearest neighbor interaction.

  • PDF

다공성실리콘의 탄화를 이용한 PL의 열적안정성 증진 (Enhancement of Thermal Stability in Photoluminescence by Carbonization of Porous silicon)

  • 최두진;서영제;전희준;박홍이;이덕희
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.467-472
    • /
    • 1997
  • Porous silicon was prepared by an anodic etching. The pore size was about 10 nm at an etching time of 20 sec and a current density of 20 mA/$\textrm{cm}^2$. The porous layer was composed of an micro-porous layer (0.6 ${\mu}{\textrm}{m}$) and a macro-porous layer (10 ${\mu}{\textrm}{m}$). Room temperature PL with maximum peak 6700$\AA$ appeared. The peak disappeared by an oxidation reaction when the porous silicon was heated to 100~20$0^{\circ}C$ in atmosphere. In order to avoid the oxidation a heat treatment was done in H2 atmosphere. The micro-pore and Si column, which formed quantum well, were collapsed by the high temperature. The PL maximum peak of heated sample was gradually red-shifted and showed about 300$\AA$ red-shift at 50$0^{\circ}C$. The intensity of PL was maintained to high temperatures in lower pressures. The porous Si was carbonized in C2H2+H2 gas in order to increase thermal stability. The carbonization of the porous Si prevented red-shift of the maximum PL peak caused by sintering effect at high temperatures, and the carbonized porous Si showed Pl signal at higher temperatures by above 20$0^{\circ}C$ than the sample in H2 atmosphere.

  • PDF

게이트 산화막 어닐링을 이용한 서브 마이크론 PMOS 트랜지스터의 NBTI 향상 (Impact of Post Gate Oxidation Anneal on Negative Bias Temperature Instability of Deep Submicron PMOSFETs)

  • 김영민
    • 한국전기전자재료학회논문지
    • /
    • 제16권3호
    • /
    • pp.181-185
    • /
    • 2003
  • Influence of post gate oxidation anneal on Negative Bias Temperature Instability (NBTI) of PMOSFE has been investigated. At oxidation anneal temperature raised above 950$^{\circ}$C, a significant improvement of NBTI was observed which enables to reduce PMO V$\_$th/ shift occurred during a Bias Temperature (BT) stress. The high temperature anneal appears to suppress charge generations inside the gate oxide and near the silicon oxide interface during the BT stress. By measuring band-to-band tunneling currents and subthreshold slopes, reduction of oxide trapped charges and interface states at the high temperature oxidation anneal was confirmed.

초음파 주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가 (Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Frequency Analysis Spectrum Method)

  • 정민화;이상국
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.90-98
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions like high temperature and high pressure for an extended period time. Such material degradation lead to various component faliures causing serious accidents at the plant. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for their preparing creep degraded specimens have been carried out for the purpose of nondestructive evaluation for creep damage which can occur in high-temperature pipelline of fossil power plant. As a result of ultrasonic tests for crept specimens, we confirmed that the high frequency side spectra decrease and central frequency components shift to low frequency bans, and bandwiths decrease as increasing creep damage in backwall echoes.

  • PDF

Water Gas Shift Reactor의 Multiscale 모델링 및 모사 (Multiscale Modeling and Simulation of Water Gas Shift Reactor)

  • 이욱준;김기현;오민
    • Korean Chemical Engineering Research
    • /
    • 제45권6호
    • /
    • pp.582-590
    • /
    • 2007
  • Water gas shift reaction(WGSR)이 일어나는 파이럿 규모 고온반응기에서의 거동 및 성능을 예측하기 위하여 수학적 모델을 수립하고 모사를 수행하였다. 반응기의 형상, 유체 및 열 이동에 대해 상세한 모델링이 가능한 전산유체역학 기법과 공정시스템 공학에서 사용되는 공정모사 기법을 함께 사용한 multiscale 모델링 및 모사를 수행하였으며, 그 결과를 일반 공정모사와 비교하였다. Multiscale 모사를 통해 CO의 전환율은 최고 0.85, 발열반응으로 인해 충전층의 온도는 약 720 K까지 오름을 알 수 있었다. 또한 동적모사를 통해 시간에 따른 반응기내에서의 온도분포, 전환율 분포 등의 주요한 변수 및 성능들의 시간에 따른 변화를 예측할 수 있었다. Multiscale 모사 기법은 파이럿 규모의 반응기뿐 아니라 상업규모의 공정에 대해 실제 상황을 상세히 반영하여 정확한 예측이 가능하므로, 상업공정 설계에 주요한 기술로 사용될 수 있다.

가스화기에서 WGS 반응을 통한 합성가스의 수소 전환 (Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier)

  • 이시훈;김정남;엄원현;백일현
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.

Effects of Mg Addition to Cu/Al2O3 Catalyst for Low-Temperature Water Gas Shift (LT-WGS) Reaction

  • Zakia Akter Sonia;Ji Hye Park;Wathone Oo;Kwang Bok Yi
    • 청정기술
    • /
    • 제29권1호
    • /
    • pp.39-45
    • /
    • 2023
  • To investigate the effects of Mg addition at different aging times and temperatures, Cu/MgO/Al2O3 catalysts were synthesized for the low-temperature water gas shift (LT-WGS) reaction. The co-precipitation method was employed to prepare the catalysts with a fixed Cu amount of 30 mol% and varied amounts of Mg/Al. Synthesized catalysts were characterized using XRD, BET, and H2-TPR analysis. Among the prepared catalysts, the highest CO conversion was achieved by the Cu/MgO/Al2O3 catalyst (30/40/30 mol%) with a 60 ℃ aging temperature and a 24 h aging time under a CO2-rich feed gas. Due to it having the lowest reduction temperature and a good dispersion of CuO, the catalyst exhibited around 65% CO conversion with a gas hourly space velocity (GHSV) of 14,089 h-1 at 300 ℃. However, it has been noted that aging temperatures greater or less than 60 ℃ and aging times longer than 24 h had an adverse impact, resulting in a lower surface area and a higher reduction temperature bulk-CuO phase, leading to lower catalytic activity. The main findings of this study confirmed that one of the main factors determining catalytic activity is the ease of reducibility in the absence of bulk-like CuO species. Finally, the long-term test revealed that the catalytic activity and stability remained constant under a high concentration of CO2 in the feed gas for 19 h with an average CO conversion of 61.83%.