• Title/Summary/Keyword: high-temperature semiconductor

Search Result 655, Processing Time 0.024 seconds

Artificial Neural Network Modeling for Photovoltaic Module Under Arbitrary Environmental Conditions (랜덤 환경조건 기반의 태양광 모듈 인공신경망 모델링)

  • Baek, Jihye;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.110-115
    • /
    • 2022
  • Accurate current-voltage modeling of solar cell systems plays an important role in power prediction. Solar cells have nonlinear characteristics that are sensitive to environmental conditions such as temperature and irradiance. In this paper, the output characteristics of photovoltaic module are accurately predicted by combining the artificial neural network and physical model. In order to estimate the performance of PV module under varying environments, the artificial neural network model is trained with randomly generated temperature and irradiance data. With the use of proposed model, the current-voltage and power-voltage characteristics under real environments can be predicted with high accuracy.

Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation (열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석)

  • Byun, Sangwon;Kim, Youngshin;Jeon, Euy sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

Blazed $GxL^{TM}$ Device for Laser Dream Theatre at the Aichi Expo 2005

  • Ito, Yasuyuki;Saruta, Kunihiko;Kasai, Hiroto;Nshida, Masato;Yamaguchi, Masanari;Yamashita, Keitaro;Taguchi, Ayumu;Oniki, Kazunao;Tamada, Hitoshi
    • Journal of Information Display
    • /
    • v.8 no.2
    • /
    • pp.10-14
    • /
    • 2007
  • A blazed $GxL^{TM}$ device is described as having high optical efficiency (> 70% for RGB lasers), and high contrast ratio (> 10,000:1), and that is highly reliable when used in a large-area laser projection system. It has a robust design and precise stress control technology to maintain a uniform shape (bow and tilt) of more than 6,000 ribbons, a $0.25-{\mu}m$ CMOS compatible fabrication processing and planarization techniques to reduce fluctuation of the ribbons, and a reliable Al-Cu reflective film that provided protection against a high-power laser. No degradation in characteristics of the GxL device is observed after operating a 5,000- lumen projector for 2,000 hours and conducting 2,000 temperature cycling tests at $-20^{\circ}C$ and $+80^{\circ}C$. At the 2005 World Exposition in Aichi, Japan the world's largest laser projection screen with a size of 2005 inches (10 m ${\times}$ 50 m) and 6 million pixels (1,080 ${\times}$ 5,760) was demonstrated.

Hall-effect properties of single crystal semiconductor P-GaSe dopes with $Er^{3+}$ (Erbium 도핑된 p-GaSe 단결정의 홀 효과 특성)

  • Lee, Woo-Sun;Oh, Guem-Kon;Chung, Young-Ho;Jung, Chang-Soo;Son, Kyeong-Choon;Kim, Nam-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.726-728
    • /
    • 1998
  • Optical and electrical properties of GaSe:$Er^{3+}$ single crystals grown by the Bridgeman technique was been investigated by using optical absorption and Hall-effect measurements. The Hall coefficients were measured by using a high impedance electrometer in the temperature range from 360K to 150K. The temperature dependence of hole concentration shows the characteristic of a partially compensated p-type semiconductor. carrier density($N_H$) of GaSe doped with Erbium was measured about $3.25{\times}10^{16}\;[cm^{-3}}$ at temperature 300K, which was high than undoped specimen. Photon energy gap ($E_{gd}$) was measured about 1.7geV.

  • PDF

A Research on the Assessment of Thermal Performance of Energy Storage Li-Ion Battery Pack (에너지 저장용 Li-Ion 배터리 팩의 열적 성능 평가에 관한 연구)

  • Jang, Hyuk;Jang, KyungMin;Kim, KwangSun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • The battery pack in this research consists of dozens of a small battery for energy storage. And this battery pack charges and discharges repeatedly at high capacity (25 ~ 50 V, 25 ~ 100 A). The high temperature which can be generated in this process has a bad effect to the lifetime and efficiency of batteries. Moreover these factors are related with maintenance cost. Therefore, we need to assess the thermal performance of the battery pack in advance using the experimental or numerical analysis. In this research, we analyzed voltage and surface temperature of one cell battery to calculate heat transfer using the numerical analysis. And the temperature of the battery surfaces and inside of the pack was also analyzed. As a result, we found out the appropriate pack structure which stacked five modules.

Temperature Compensated Hall-Effect Power IC for Brushless Motor

  • Lee, Cheol-Woo;Jang, Kyung-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.74-77
    • /
    • 2002
  • In this paper we present a novel temperature compensated Hall effect power IC for accurate operation of wide temperature and high current drive of the motor coil. In order to compensate the temperature dependence of Hall sensitivity with negative temperature coefficient(TC), the differential amplifier has the gain consisted of epi-layer resistor with positive TC. The material of Hall device and epi-resistor is epi-layer with the same mobility. The variation of Hall sensitivity is -38% at 150$^{\circ}C$ and 88% at - 40$^{\circ}C$. But the operating point(B$\sub$op/) and release point(B$\sub$RP/) of the Hall power IC are within ${\pm}$25%. The experimental results show very stable and accurate performance over wide temperature range of -40$^{\circ}C$ to 125$^{\circ}C$.

  • PDF

Laser Thermal Processing System for Creation of Low Temperature Polycrystalline Silicon using High Power DPSS Laser and Excimer Laser

  • Kim, Doh-Hoon;Kim, Dae-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.647-650
    • /
    • 2006
  • Low temperature polycrystalline silicon (LTPS) technology using a high power laser have been widely applied to thin film transistors (TFTs) for liquid crystal, organic light emitting diode (OLED) display, driver circuit for system on glass (SOG) and static random access memory (SRAM). Recently, the semiconductor industry is continuing its quest to create even more powerful CPU and memory chips. This requires increasing of individual device speed through the continual reduction of the minimum size of device features and increasing of device density on the chip. Moreover, the flat panel display industry also need to be brighter, with richer more vivid color, wider viewing angle, have faster video capability and be more durable at lower cost. Kornic Systems Co., Ltd. developed the $KORONA^{TM}$ LTP/GLTP series - an innovative production tool for fabricating flat panel displays and semiconductor devices - to meet these growing market demands and advance the volume production capabilities of flat panel displays and semiconductor industry. The $KORONA^{TM}\;LTP/GLTP$ series using DPSS laser and XeCl excimer laser is designed for the new generation of the wafer & FPD glass annealing processing equipment combining advanced low temperature poly-silicon (LTPS) crystallization technology and object-oriented software architecture with a semistandard graphical user interface (GUI). These leading edge systems show the superior annealing ability to the conventional other method. The $KORONA^{TM}\;LTP/GLTP$ series provides technical and economical benefits of advanced annealing solution to semiconductor and FPD production performance with an exceptional level of productivity. High throughput, low cost of ownership and optimized system efficiency brings the highest yield and lowest cost per wafer/glass on the annealing market.

  • PDF

Study on Treatment Characteristics of Perfluorinated Compounds Using a High Temperature Plasma (고온 플라즈마를 이용한 과불화화합물의 처리 특성 연구)

  • Moon, Gi-Hak;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.108-113
    • /
    • 2019
  • In this study, the decomposition characteristics of perfluorinated compounds generated in semiconductor manufacturing process were investigated by using a high temperature plasma. The analysis results revealed that $CF_4$ and $SF_6$ showed the highest efficiency at 12.8 kW power, but no significant difference was observed at the power above. Experimental results showed that the maximum efficiency was obtained at the flow rate of about 14 mL/min and the treatment efficiency decreased as the flow rate increased or decreased with respect to the flow rate of 14 mL/min. As a result, the decomposition characteristics of perflurocompounds (PFCs) using a high temperature plasma could be grasped, and also the basis for the treatment of PFCs and greenhouse gases generated in the semiconductor manufacturing process could be obtained.

A Study on the Chemical Properties of AZO with Crystal Structure and IGZO of Amorphous Structure Due to the Annealing Temperature (결정질AZO 박막과 비정질IGZO 박막의 결정구조와 결합에너지와의 상관성)

  • So, Young Ho;Song, Jung Ho;Seo, Dong Myung;Oh, Teresa
    • Industry Promotion Research
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • To research the correlation between the amorphous and crystal structure of oxide semiconductors, AZO and IGZO films were deposited and annealed with various temperatures in a vacuum state. AZO increased the degree of crystal structure with increasing the annealing temperature, but IGZO became an amorphous structure after the annealing process at high temperature. The series of AZO films with various annealing temperatures showed the chemical shift from the analyzer of PL and O 1s spectra, but the results of IGZO films by PL and O 1s spectra were not observed the chemical shift. The binding energy of oxygen vacancy of AZO with a crystal structure was 531.5 eV, and that of IGZO with an amorphous structure was 530 eV as a lower binding energy.

Loss Analysis and Comparison of High Power Semiconductor Devices in 5MW PMSG MV Wind Turbine Systems

  • Lee, Kihyun;Suh, Yongsug;Kang, Yongcheol
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1380-1391
    • /
    • 2015
  • This paper provides a loss analysis and comparison of high power semiconductor devices in 5MW Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) Wind Turbine Systems (WTSs). High power semiconductor devices of the press-pack type IGCT, module type IGBT, press-pack type IGBT, and press-pack type IEGT of both 4.5kV and 6.5kV are considered in this paper. Benchmarking is performed based on the back-to-back type 3-level Neutral Point Clamped Voltage Source Converters (3L-NPC VSCs) supplied from a grid voltage of 4160V. The feasible number of semiconductor devices in parallel is designed through a loss analysis considering both the conduction and switching losses under the operating conditions of 5MW PMSG wind turbines, particularly for application in offshore wind farms. This paper investigates the loss analysis and thermal performance of 5MW 3L-NPC wind power inverters under the operating conditions of various power factors. The loss analysis and thermal analysis are confirmed through PLECS Blockset simulations with Matlab Simulink. The comparison results show that the press-pack type IGCT has the highest efficiency including the snubber loss factor.