• Title/Summary/Keyword: high-speed railway box girder

Search Result 39, Processing Time 0.025 seconds

Comparison of Girder Height by Span in Various Types of Railway Bridge (철도교량형식의 경간에 따른 형고 비교)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.262-267
    • /
    • 2008
  • The type used mainly in present our country in the superstructure of the railway bridge including the high speed railway is classified by the box girder and the I-type girder, greatly. The box girder is mainly used by the high speed railway bridge, and the I-type girder is used mostly by general railway bridge style. In this study, according to current railway bridge design code, we execute design by the span length of each considered bridge form. Also we analyze the suitable girder height by the span length and calculate the construction costs. The comparative analysis of the structural efficiency is produced by the span length. From this study, it is exposed that the girder height by the span length is the biggest in box girder. Also it is evaluated that the construction costs of the box girder is higher than that of the I-type girder although there is a difference between more or less according to adopted construction method.

  • PDF

Precast Full Span Construction of Continuous PSC Box Girder Bridge for High Speed Railway (고속철도 PSC 박스거더 연속고의 프리캐스트 경간 일괄 가설)

  • Park Jeong Wha;Kim Kwang Soo;Sim Chungwook;Yoon Chul-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1168-1173
    • /
    • 2004
  • Bridges and tunnels mainly compose the structural system of Kyung-bu high-speed railway in Korea and the prestressed concrete box girder bridges are applied for the most part of bridge structures. Precast full span construction method was practiced in the construction of many prestressed concrete box girder bridges in Kyung-bu high speed railway for the high quality, great construction speed, low construction cost and construction safety. However, there have been no application of this method in continuous bridges until now. Therefore, a new advanced precast full span construction method is developed using pre-tensioning for precast and post-tensioning in alternating the simple span into a continuous bridge system. since the high-speed railway trains can cause dynamic problems in a continuous bridge. This study shows the structural behavior and the construction process of the new advance method.

  • PDF

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.

Field Investigation of Composite Behavior in High-speed Railway PSC Box Girder Bridge (고속전철 PSC 박스거더교 합성거동의 현장 계측에 관한 연구)

  • 김영진;김병석;강재윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.995-1000
    • /
    • 2000
  • Segmentally erected prestressed concrete box girder bridges have been widely used in Korean high speed railway. Segmental erection has been accomplished along the longitudinal direction and across the depth of cross section. The cross section is similar to a composite cross section, composed of old and new segments. Because these segments have different time-dependent creep and shrinkage properties, a stress redistribution takes place during the construction period. It is the main objective in this research to investigate this behavior. An actual bridge was instrumented with 96 vibrating wire embedded type strain gauges, 6 electronic type steel strain gauges, and 75 thermocouples. Two span continuous high speed railway bridge was selected. Two points of importance, such as the midpoint of the first span and the point of interior support, along the span of the girder were chosen to monitor the time dependent behaviors for an extended period of time. The data collection was starting just after concrete girder were cast and is still going on. According to the measured results, the strain distributions across the depth of the section at midspan and interior support were not continuous and the important redistribution of stresses takes place. Thus, rational design of prestressed concrete composite box girder bridges need.

A Dynamic Analysis of Wheel Forces distribution of KTX locomotive for Interaction of PSC box Girder Bridge (PSC 박스거더 교량의 상호작용에 의한 KTX 동력차의 윤하중 분포 해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Sim, Young-Woo;Yun, Jun-Kwan;Kim, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.680-689
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a comprehensive estimation of the dynamic response spectrum for locomotive's wheels running over a Pre-Stressed Concrete (PSC) box girder bridge on the Korea high speed railway. The wheel force spectrum with the bridge behavior are analyzed as the dynamic procedure for various running speeds (50~450km/h). The high-speed railway locomotive (KTX) is used as 38-degree of freedom system. Three displacements(vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing). For one car-body and two bogies as well as five movements except pitching rotation components for four wheel axes forces are considered in the 38-degree of freedom model. Three dimensional frame element is used to model of the PSC box girder bridges, simply supported span length of 40m. The irregulation of rail-way is derived using the exponential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic responses of bridge passing through the railway locomotive with high-speed analyzed by Newmark-${\beta}$ method and Runge-Kutta method are compared and contrasted considering the developed models of bridge, track and locomotive comprehensively. The dynamic analyses of wheel forces by Runge-Kutta method which are able to analyze the forces with high frequency running on the bridge and ground rail-way are conducted. Additionally, wheel forces spectrum and three rotational components of vehicle body for three typical running speeds is also presented.

  • PDF

A Study on Dynamic Capacity Assessment of PSC Box Girder High Speed Railway Bridges Using Time Series Load (시계열하중을 이용한 PSC 박스 거더 고속철도교량의 동적성능 평가에 관한 연구)

  • Han, Sung Ho;Bang, Myung Seok;Lee, Woo Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.211-219
    • /
    • 2010
  • The design concept of high speed railway bridges is applied to a method for increasing the stiffness of existing bridge structures considering the impact factor by a static load. Generally, the process of structural design would be relied upon an advanced foreign technology. However, the dynamic amplification factor (DAF) and dynamic capacity assessment of high speed railway bridges may be conducted essentially a detailed estimation because the resonance phenomenon is affected by the long length (380 m) and high speed (300 km/h) moving of a high speed railway (Korea Train eXpress: KTX). Therefore, this study will be examined the dynamic capacity of the typical PSC Box Girder high speed railway bridge efficiently, and offered the basic information for the reasonable structural design. For this, the static analysis is conducted considering the load line diagram of KTX based upon existing references. In addition, the KTX moving load is transformed into the time series load considering various analytical variables. The time history analysis is assessed reasonable using the transformed time series load. At that time, analytical variables for calculating the time series load are considered loading node distance, time increment and KTX velocity variation etc. The dynamic capacity of the PSC Box Girder high speed railway bridge is examined based upon the FE analysis result systematically. The structural safety is assessed quantitatively in accordance with the related regulation of the inside and outside of the country.

Prediction of Jacking Force Loss for Serviced High Speed Railway PSC BOX Bridge Using Constant Deflection (상시처짐을 이용한 공용중인 고속철도 PSC BOX교의 긴장력 손실 예측)

  • Jung-Youl Choi;Tae-Keun Kim;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.549-555
    • /
    • 2023
  • Jacking force loss management inside the PSC Box girder of a common high-speed railway is a very important feature in girder performance, and requires detailed management during the maintenance of the girder. This study aimed to analyze the timing of re-tension prediction of PSC Box girder based on the reduction level of the packing force inside the girder and the results of the tension loss measured without the train load test. As a result of predicting the timing of re-tension according to the level of tension reduction of the PSC Box Girder, the Jacking Force Loss curve was gently analyzed before the structure reached 17 years after confirmed completion, and 17 years later, it was found that the jacking force loss curve progressed rapidly. The results confirmed that the tension of the structure decreases with the service life increase, but considerably decreases as the structure ages. Therefore, more data and research on tension loss of facilities over 20 years are much required.

Dynamic problems in Korea high-speed railway (경부 고속철도 교량의 진동문제)

  • Kwark, Jong-Won;Chin, Won-Jong;Choi, Eun-Suk;Kang, Jae-Yoon;Kim, Byung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1040-1045
    • /
    • 2004
  • A study has been performed to investigate on the dynamic behavior of bridges crossed by the KTX(Korea Train eXpress). The investigated bridge is a 2-span continuous concrete box bridge with spans of 40m length named Yeon-Jae bridge. We have performed many field tests on the dynamic behaviors of a real bridge for KTX using various sensors. For this study, various sensors have been installed on the Yeon-Jae bridge located in the experimental section of the KHSR(Korea High-Speed Railway) track and tests have been performed. Through this study, it is known that effects of local modes and sleepers in the box-girder bridge for the KTX on the dynamic responses is remarkable. Therefore, in the investigation on the accelerations of the box-girder bridge, three dimensional model should be adopted in numerical analysis including the effects of sleepers. The effect of temperature on the accelerations of the bridge should be investigated in the further studies to determine the reason of excessive acceleration.

  • PDF

A Study on the Behavior of Composite PSC Box Girder High-speed Railway Bridges (고속전철 PSC 박스거더 교량의 합성거동에 관한 연구)

  • 김영진;김병석;강재윤
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.54-60
    • /
    • 1998
  • PSC box bridges by MSS construction method in high-speed railway may not be cast in place at one step. Web and bottom flange(U member) in the cross section are cast in place at first, then top flange will be cast in place later with some time lag. In this section, stress distributions of U member and top flange are different with those in generally complete cast in place cross section. In the composite section composed of two different aged members, the redistribution of stresses takes place. This results from time-dependent strain characteristics of concrete and the effects of forces applied at the various stages. For comparison in the present paper, two models, one with the composite cross section and the other with generally complete cast in place cross section, are analyzed. The longitudinal stress differences of two models on considering construction stages are compared. As the analysis results show the considerable differences in the stresses of cross section between two models, the composition of cross section is considered for rational design of PSC box girder bridge.

  • PDF

Dynamic Analysis of New-type Precast V-girder Bridge (신형식 V형 거더 교량의 동적안정석 해석)

  • Cho, Jeong-Rae;Kim, Yeong-Jin;Yang, Yeon-Jong;Koo, Ja-Kap
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1536-1541
    • /
    • 2011
  • Simple girder bridges are more economical than commonly used PSC box girder bridges in high-speed railway construction, if they secure the riding stability. In this study, the dynamic behavior and riding stability of the newly developed precast V-girder bridge are analyzed. The dynamic moving load analysis is used including two train load case : the KTX train and freight train.

  • PDF