• 제목/요약/키워드: high-speed rail vehicle

검색결과 146건 처리시간 0.029초

An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort

  • Ni, Y.Q.;Ye, S.Q.;Song, S.D.
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.53-74
    • /
    • 2016
  • This paper presents an experimental study on constructing a tunable secondary suspension for high-speed trains using magneto-rheological fluid dampers (referred to as MR dampers hereafter), in the interest of improving lateral ride comfort. Two types of MR dampers (type-A and type-B) with different control ranges are designed and fabricated. The developed dampers are incorporated into a secondary suspension of a full-scale high-speed train carriage for rolling-vibration tests. The integrated rail vehicle runs at a series of speeds from 40 to 380 km/h and with different current inputs to the MR dampers. The dynamic performance of the two suspension systems and the ride comfort rating of the rail vehicle are evaluated using the accelerations measured during the tests. In this way, the effectiveness of the developed MR dampers for attenuating vibration is assessed. The type-A MR dampers function like a stiffness component, rather than an energy dissipative device, during the tests with different running speeds. While, the type-B MR dampers exhibit significant damping and high current input to the dampers may adversely affect the ride comfort. As part of an ongoing investigation on devising an effective MR secondary suspension for lateral vibration suppression, this preliminary study provides an insight into dynamic behavior of high-speed train secondary suspensions and unique full-scale experimental data for optimal design of MR dampers suitable for high-speed rail applications.

가속도 값을 이용한 궤도 불규칙도 검측 (Estimation of Rail Irregularities by using Acceleration values)

  • 김영모;박찬경;최성훈;김상수;박춘수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2173-2178
    • /
    • 2008
  • Railroad is the major factor of vibration source in railway vehicles, and it must carefully maintained the original condition to secure the safety and good ride comfort of passenger. Measuring the condition of rail irregularities such as surface, alignment, gauge, twist and cant etc is required to maintain the good performance of railroad. Currently, the various rail irregularity measurement systems(EM120, ROGER1000K and the Total Rail Irregularity Measurement system of Korea High Speed Train) are operated in Korea to estimate the rail irregularity. It is hard to verify the correlation of one rail irregularity data of a measurement system with the other, because they have been adopted different rail irregularity estimation methods. The best method securing the reliability of the irregularity data is the direct confirmation on the ground where the measurement system had detected as a fault section, but it is impossible to apply all sections simultaneously due to limitation of time, labor, cost and equipments. There is a method to secure the reliability of the data by using acceleration values. Rail irregularities, the major factor of vibration in railway vehicle, are transmitted to the vehicle acceleration through masses, springs, dampers and joints as the system dynamic formation. In this study, Transition Function has been adopted by using the rail irregularity and the acceleration value regarding as input & output parameters respectively. It has been verified by comparing the analyzed results with real measured irregularity data from the Total Rail Irregularity Measurement system of Korea High Speed Train. Also various methods has been accomplished to verify the correlation between rail irregularities and acceleration values.

  • PDF

고속화차 한량의 사행동 해석 (Analysis of the Snake motion of One High Speed Freight Car)

  • 이승일;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.193-201
    • /
    • 2002
  • The development of railway vehicle and bogie involves the proper selection of design parameters not only to achieve high speed but also to reduce the vibration of the train. In this study an analytical model of a high speed freight car is developed to find the critical speed. The high speed freight car can generate the snake motion of the lateral and yawing motion of the car body, the bogie, and the wheelset. Numerical analysis for the nonlinear equation motions with 17 degrees of freedom showed the running stability and critical speed due to the snake motion. Also, the vibration modes of tile high speed freight car was calculated using ADAMS RAIL, which showed that the critical speed have the yawing modes of the car body and the bogie. Finally, this paper shows that the snake motion of the vehicle can be controlled with the modifications of the design parameters.

  • PDF

경제성을 고려한 보조전원장치의 컨버터 입력전압 추정을 위한 제어기 설계 (A Controller Design for SIV with Converter Derived Input Voltage for Consideration Economic Efficiency)

  • 김재문;안정준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1131-1136
    • /
    • 2008
  • The single-phase PWM converter employing power semiconductors is currently applied to the power unit of high-speed rail vehicle and increasingly used as the front-end converter with properties of near unity power factor. Power factor and harmonics are increasingly important needs for drive system of high-speed rail vehicle. The proposed approach has many advantages which include fewer semiconductor components, simplified control, high performance features and satisfies IEC 555 harmonic current standards. Simulation results show that the dc-link voltage control obey the reference value during constant load and input current is near sinusoidal.

  • PDF

HEMU 430-X 주행특성을 고려한 호남고속철도 곡선궤도구조의 거동연구 (Study on the Behavior of Curved Track in Honam High-Speed Line considering the Running Performanace for HEMU 430-X)

  • 강윤석;엄기영;김석원
    • 한국산학기술학회논문지
    • /
    • 제14권8호
    • /
    • pp.4068-4076
    • /
    • 2013
  • 열차가 주행할 때 발생하는 차륜-레일 상호작용력은 열차의 주행속도, 차량축중과 선형조건(곡선반경, 캔트) 등 여러 변수의 영향을 받는다. 구조물의 안정성을 확보하기 위해서는 증속이전에 각 변수별로 구조물에 대한 영향 평가가 필요하다. 최근 차세대고속철도사업으로 국내에서 개발된 HEMU 430-X는 지난 2013년 3월, 경부 2단계구간에서 최고 421.4km/h의 속도를 달성한 바 있다. 향후 호남고속선 Test-Bed 구간(오송기점 K.P 100-128km)에서 추가적인 증속주행시험을 하는 경우 동적효과 증가로 인한 동적하중증가와 원심하중에 의한 외측레일에 대한 궤도작용력에 대한 검토가 필요하다. 본 논문에서는 HEMU열차의 추진력, 실측주행저항과 호남고속선의 선로선형을 고려하여 TPS 분석을 수행하여 선로에서의 속도변화를 계산하였다. 그리고 HEMU 열차주행시 곡선구간에서의 원심하중과 충격계수를 고려한 궤도부담력을 평가하였다.

고속철도 터널에서의 궤도 형식에 따른 궤도와 차체의 진동 특성 (Characteristics of Vibration of Track and Vehicle Body According to Type of Track in Tunnel of High-Speed Railway Lines)

  • 김만철;장승엽
    • 대한토목학회논문집
    • /
    • 제26권1D호
    • /
    • pp.125-132
    • /
    • 2006
  • 본 연구에서는 터널 내에서 자갈도상궤도와 콘크리트 슬래브궤도 등 궤도 형식에 따른 궤도와 차량의 진동특성을 규명하기 위해 자갈도상궤도와 콘크리트 슬래브궤도가 부설된 경부고속철도 터널 내에서 궤도와 KTX 차체의 진동가속도를 측정하여 주파수 해석을 수행하였으며, 이를 통해 궤도 형식에 따른 레일, 침목, 자갈도상, 슬래브 등 궤도 구성품과 터널 라이닝 등 궤도의 진동과 차체의 진동 특성을 분석하고, 그 상관관계를 분석하였다. 측정결과에 따르면 터널 내에서는 80Hz 대역의 주파수에서 레일과 차량의 진동이 크게 증가하였고, 특히 콘크리트 슬래브궤도가 부설된 터널에서 진동이 더욱 크게 나타났다. 연구결과에 의하면 레일 지지 스프링의 동적특성의 변화에 따라 차량을 포함한 전체 시스템의 진동특성이 달라질 수 있으며, 따라서 콘크리트 슬래브궤도의 지지강성을 결정하는 데 있어서 시스템 측면에서 차량의 진동과의 상호관계를 고려해야 한다.

곡선부 통과 차량의 진동특성 및 안전성 평가 (A Safety Assessment and Vibration Characteristics of Railway Vehicle Passing Curves)

  • 박광수;이승일;이희성
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.993-1001
    • /
    • 2007
  • An analysis model has been developed to assess running safety of railway vehicle passing curves. By using ADAMS/Rail, a computer analysis has been conducted by changing various parameters according to the track conditions. Analysis results show as follows: A derailment coefficient of left wheel was increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A unload rate of left wheel was also increased according to increase of cant at low speed, while it was decreased as increase of cant at high speed. A wear number of left wheel was increased according to increase of cant at all speed, but only at 35 m/s, it was decreased as increase of cant. A friction coefficient of left wheel was Increased according to increase of cant at all speed, but only at 35 m/s. it was decreased as increase of cant.

한국형 고속전철의 주행시험을 통한 진동 모드 분석 연구 (A Study on the Vehicle Vibration Mode through the On-line Test for Korean High Speed Train)

  • 박찬경;김영국;김석원;김기환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(I)
    • /
    • pp.156-161
    • /
    • 2003
  • Korean High Speed Train (KHST) has been tested on high speed line in JungBu site since it was developed in 2002. The data acquisition system was used to test successfully the on-line test for proving the dynamic performance of KHST. The recognition of system vibration mode for railway vehicle is essential to understand the characteristics of design for dynamic system and diagnose the dynamic problems of vehicle system during test and operation. But, up to now, there are the efforts to know the system vibration mode within limit of theoretical field only, not experimental approach with systematic method. The theoretical results are too reliable to apply to real design problem, because it is theoretically based on the homogeneous linear system although the real system have the nonlinear characteristics and vary the environmental conditions. Therefor, in this paper, it is proposed the efficient method of vibration analysis for rail vehicle system and this method apply to KHST to recognize the vibration mode characteristics of it. The results show that this method is able to make the system vibration modes for KHST clear.

  • PDF

틸팅차량 완화곡선 증속 주행시 궤도작용력 검토 (A Study on the Rail Pone of Transition Curve Track to Speed Up of Tilting train)

  • 신태형;최정열;엄기영;박용걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.529-538
    • /
    • 2009
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. Therefore, in this study, the dynamic rail force of the tilting (Hanvit 200), high-speed (KTX) and general (Mugunghwa) vehicle caused by driving in transition curve track was measured. And, it compared the tilting response with the other by using the measured wheel load data in transition curve track, and then evaluated probability the range of wheel load fluctuation for the variable dynamic vertical and lateral wheel load. As a result, a range of wheel load by occured a change of cant from the high-speed and general vehicle which had fixed bogie structure was distributed throughout small deviation (${\Delta}8{\sim}13kN$). Otherwise, in case of the tilting train which was consisted of the pendulum bogie structure was distributed wide range about large deviation (${\Delta}25{\sim}28kN$) by changed of cant.

  • PDF

주행속도 시속 500km 달성을 위한 고속철도 차량의 공기저항 저감 목표 및 달성 방안 (Target and Implementation of Aerodynamic Drag Reduction for High-speed Train to Reach Up to 500km/h Running Speed)

  • 권혁빈;윤수환;이형우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1320-1326
    • /
    • 2011
  • The maximum speed of high-speed rail is restricted to various factors such as track condition including slope and radius, tunnel and dynamic stability of vehicle. Among the various factors, traction effort and resistance to motion is principal and basic factor. In addition, at high speed over 300km/h, aerodynamic drag amounts up to 80% of resistance to motion, that it can be said that aerodynamic drag is the most important factor to decide the maximum speed of high-speed rail system. This paper deals with a measure to increase the maximum speed of high-speed train by reducing aerodynamic drag. The traction effort curve and resistance to motion curve of existing high-speed train under development has been employed to set up the target of aerodynamic drag reduction to reach up to 500km/h without modification traction system. In addition, the contribution of various sources of aerodynamic drag to total value has been analyzed and the strategy for implementation of aerodynamic drag reduction has been discussed based on the aerodynamic simulation results around the train using computational fluid dynamics.

  • PDF