• Title/Summary/Keyword: high-speed motion control

Search Result 265, Processing Time 0.038 seconds

High-Speed Monitoring Device to Inspect Inkjet Droplets with a Rotating Mirror and Its Measuring Method for Display Applications (잉크젯을 이용한 디스플레이 생산을 위한 회전 미러 방식의 잉크젯 액적 모니터링 장비 및 측정법 연구)

  • Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.525-532
    • /
    • 2017
  • The development of an inkjet-based manufacturing machine for the production of next-generation displays using organic and quantum-dot light emitting diodes at a low cost has been conducted. To employ inkjet printing in production lines of displays, the development of a high-speed inkjet-monitoring device to verify the reliable droplet jetting status from multiple nozzles is required. In this study, an inkjet monitoring device using a rotatable mirror with rotary and linear ultrasonic motors is developed in place of a conventional, linear reciprocating, motion-based inkjet monitoring device. Its performance is also demonstrated. The measurements of circular patterns with diameters of $10{\mu}m$, $30{\mu}m$, and $50{\mu}m$ are performed with the accuracies of $0.5{\pm}1.0{\mu}m$, $-1.2{\pm}0.3{\mu}m$, and $0.2{\pm}0.5{\mu}m$, respectively, within 17 sec. By optimizing the control program, the takt time can be reduced to as short as 8.6 sec.

Handover in LTE networks with proactive multiple preparation approach and adaptive parameters using fuzzy logic control

  • Hussein, Yaseein Soubhi;Ali, Borhanuddin M;Rasid, Mohd Fadlee A.;Sali, Aduwati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2389-2413
    • /
    • 2015
  • High data rates in long-term evolution (LTE) networks can affect the mobility of networks and their performance. The speed and motion of user equipment (UE) can compromise seamless connectivity. However, a proper handover (HO) decision can maintain quality of service (QoS) and increase system throughput. While this may lead to an increase in complexity and operational costs, self-optimization can enhance network performance by improving resource utilization and user experience and by reducing operational and capital expenditure. In this study, we propose the self-optimization of HO parameters based on fuzzy logic control (FLC) and multiple preparation (MP), which we name FuzAMP. Fuzzy logic control can be used to control self-optimized HO parameters, such as the HO margin and time-to-trigger (TTT) based on multiple criteria, viz HO ping pong (HOPP), HO failure (HOF) and UE speeds. A MP approach is adopted to overcome the hard HO (HHO) drawbacks, such as the large delay and unreliable procedures caused by the break-before-make process. The results of this study show that the proposed method significantly reduces HOF, HOPP, and packet loss ratio (PLR) at various UE speeds compared to the HHO and the enhanced weighted performance HO parameter optimization (EWPHPO) algorithms.

Gap Control Using Discharge Pulse Counting in Micro-EDM (미세 방전 가공에서의 방전 펄스 카운팅을 이용한 간극 제어)

  • Jung J.W.;Ko S.H.;Jeong Y.H.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.499-500
    • /
    • 2006
  • The electrode wear in micro-EDM significantly deteriorates the machining accuracy. In this regard, electrode wear needs to be compensated in-process to improve the product quality. Therefore, there are substantial amount of research about electrode wear. In this study a control method for micro-EDM using discharge pulse counting is proposed. The method is based on the assumption that the removed workpiece volume is proportional to the number of discharge pulses, which is verified from experimental results analyzing geometrically machined volume according to various number of discharges. Especially, the method has an advantage that electrode wear does not need to be concerned. The proposed method is implemented to an actual micro-EDM system using high speed data acquisition board, simple counting algorithm with 3 axis motion system. As a result, it is demonstrated that the volume of hole machined by EDM drilling can be accurately estimated using the number of discharge pulses. In EDM milling process a micro groove without depth variation caused by electrode wear could be machined using the developed control method. Consequently, it is shown that machining accuracy in drilling and milling processes can be improved by using process control based on the number of discharge pulses.

  • PDF

A Study on Dynamic Characteristics of Directional Control Logic Valve (방향제어 조직밸브의 동특성에 관한 연구)

  • Lee, Il-Yeong;Oh, Se-Kyung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.4
    • /
    • pp.172-179
    • /
    • 1988
  • A cartridge type hydraulic logic valve consists of simple two port valve whose poppet is closed or opened by means of pressure signal of a pilot line. Accordingly, the logic valve can be used not only for direction, flow and pressure control purpose but also for versatile function valve which enables all above mentioned functions. In addition, the valve has little internal leakage and pressure loss, superior response characteristics and easiness in making small block type valve. The above mentioned good performances being recognized recently, the logic valve has been used widely in the large scale hydraulic system such as a hydraulic press system, for the performance requirements of high speed operation and precise control characteristics. However, there are scarce reports until now, except for a few ones from Aachen Institute of Technology in West Germany, so it is necessary to be studied on development and investigation for practical application. This paper showed that the static and dynamic characteristics of a logic valve when the logic valve is used for directional control, to investigate the relations between the valve operating characteristics and the valve design conditions. From the above mentioned procedure, it was ascertained that the valve operation characteristics obtained by numerical analysis showed good agreements with experimental results. The representative results obtained are as follows; 1. During the valve is closing, the poppet velocity is almost constant in the logic valve. 2. The pilot pressure P sub(3) and the resistance R in the pilot line have much influences on the valve operation time. 3. Spring strength have not such a severe influence on the valve operating time. 4. The operation characteristics of the logic valve can be estimated with good accuracy comparatively by numerical analysis with the equations describing poppet motion.

  • PDF

An Effect Analysis of Rearfoot Movement and Impact force by Different Design of Running Shoes Hardness (런닝화의 경도 차이가 후족 제어 및 충격력에 미치는 영향 분석)

  • Lee Dong-Choon;Lee Woo-Chang
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.291-296
    • /
    • 2002
  • The midsole hardness of athletic footwear affects capability of absorbing impact shock and controls rearfoot movement during running and walking. The prior studies were focused on examining the proper hardness of footwear for rearfoot movement or to finding effective hardness for absorbing impact shock. The displacements of maximal Achilles tendon angle described a amount of pronation motion is decreased when medial hardness of midsole is large more than lateral. Increasing hardness of footwear midsole are effected to reduce maximum and intial pronation angle, but declined the ability of impact shock during heelstrike. For determination of effectiveness hardness of midsole, therefore, the study that makes a compromise between rearfoot movement and absorbing impact during footstrike must be performed. The purpose of this study is to examine quantitative values of rearfoot control and absorbing impact shock with different hardness of medial and lateral midsole on heel portion. The results are useful to define biomechanical hardness of midsole for developing running shoes. As variable for impact shock, accelerations onto shank and knee are measured during 4 running speeds (5, 7, 9, 11km/h). Also, maximum and $10\%$ pronation angle (Achilles tendon angle) were measured using high-speed camera.

  • PDF

Calibration of a Five-Hole Multi-Function Probe for Helicopter Air Data Sensors

  • Kim, Sung-Hyun;Kang, Young-Jin;Myong, Rho-Shin;Cho, Tae-Hwan;Park, Young-Min;Choi, In-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.43-51
    • /
    • 2009
  • In the flight of air vehicles, accurate air data information is required to control them effectively. Especially, helicopters are often put in drastic motion involved with high angle of attacks in order to perform difficult missions. Among various sensors, the multi function probe (MFP) has been used in the present study mainly owing to its advantages in structural simplicity and capability of providing various information such as static and total pressure, speed, and pitch and yaw angles. In this study, a five-hole multi-function probe (FHMFP) is developed and its calibration is conducted using multiple regressions. In this work a calibration study on the FHMFP, an air data sensor for helicopters, is reported. It is shown that the pitch and yaw angles' accuracy of calibration is ${\pm}0.91^{\circ}$ at a cone angle of $0^{\circ}{\sim}30^{\circ}$ and ${\pm}2.0^{\circ}$ at $30^{\circ}{\sim}43^{\circ}$, respectively, which is summarized in table 3.

An Architecture of One-Dimensional Systolic Array for Full-Search Block Matching Algorithm (완전탐색 블럭정합 알고리즘을 위한 일차원 시스톨릭 어레이의 구조)

  • Lee, Su-Jin;Woo, Chong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.34-42
    • /
    • 2002
  • In this paper, we designed the VLSI array architecture for the high speed processing of the motion estimation used by block matching algorithm. We derived the one dimensional systolic array from the full search block matching algorithm. The data and control signals of the proposed systolic array are passed through adjacent processing element. So proposed architecture has temporal and spatial locality. The I/O ports exists only in the first and last processing elements of the array. This architecture has low pin counts and modular expandability. So the proposed array architecture can be cascaded for different block size and search range.

An Optical Flow Based Time-to-Collision Predictor

  • Yamaguchi, T.;Kashiwagi, H.;Harada, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.232-237
    • /
    • 1998
  • This paper describes a new method for estimating time-to-collision which exhibits high tolerance to noise contained in camera images. Time to collision (TTC) is one of the most important parameters available from a camera attached to a mobile machine. TTC indirectly stands far the translation speed of the camera and is usually calculated either from successive images or optical flow by using intimate relationship between TTC and flow divergence. In most cases, however, it is not easy to get accurate optical flow, which makes it difficult to calculate TTC. In this study it is proved that if the target has a smooth surface, the average of divergence over any point-symmetric region on the image is equal to the divergence of the center of the region. It means that required divergence can be calculated by integrating optical flow vectors over a symmetric region. It is expected that in the process of the integration, accidental noise is canceled if they are independent of optical flow and the motion of the camera. Experimental results show that TTC can be estimated regardless of the surface condition. It is also shown that influence of noise is eliminated as the area of integration increases.

  • PDF

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • Park, Jong-Chun;Kang, Dae-Hwan;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.49-55
    • /
    • 2003
  • When a body with slant angle after its shoulder is moving at high speed, the turbulent motion around the afterbody is generally associated with the flaw separation and determines the normal component of the drag. By changing the slant angle of afterbody, there exists a critical angle at which the drag coefficients change drastically. Understanding and control of the turbulent separated flows are of significant importance for the design of optimal configuration of the moving bodies. In the present paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies with slant angle. By basis of understanding the structure of turbulent flaw around the body, the new configuration of afterbodies are designed to reduce the drag of body and the nonlinear effects due to the interaction between the body configuration and the turbulent separated flows are investigated by use of the developed LES technique.

  • PDF

Development of a Specialized Underwater Leg Convertible to a Manipulator for the Seabed Walking Robot CR200 (해저 보행 로봇 CR200을 위한 매니퓰레이터 기능을 갖는 다리 개발)

  • Kang, Hangoo;Shim, Hyungwon;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.709-717
    • /
    • 2013
  • This paper presents the development of a specialized underwater leg with a manipulator function(convertible-to-arm leg) for the seabed walking robot named CRABSTER200(CR200). The objective functions of the convertible-to-arm leg are to walk on the seabed and to work in underwater for precise seabed exploration and underwater tasks under coastal area with strong tidal current. In order to develop the leg, important design elements including the degree of freedom, dimensions, mass, motion range, joint structure/torque/angular-speed, pressure-resistance, watertight capability and cable protection are considered. The key elements of the convertible-to-arm leg are realized through concept/specific/mechanical design and implementation process with a suitable joint actuator/gear/controller selection procedure. In order to verify the performance of the manufactured convertible-to-arm leg, a 25bar pressure-resistant and watertight test using a high-pressure chamber and a joints operating test with posture control of the CR200 are performed. This paper describes the whole design, realization and verification process for implementation of the underwater convertible-to-arm leg.