• Title/Summary/Keyword: high-speed motion control

Search Result 265, Processing Time 0.036 seconds

A study on the driver and controller design of the biped robot (이족보행로보트의 구동부 및 제어부의 설계에 관한 연구)

  • Shim, In-Sup;Kim, Ju-Han;Kim, Dong-Jun;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.871-873
    • /
    • 1995
  • The purpose of this paper is to design and construct the compact type joint driver and controller of the biped robot. This biped robot will be designed to be suitable for the practical usages and applications in the work environment, which is not plat floor, like a stairs by taking the stand-alone style that equipped all the parts except power sources. Generally, highly nonlinear motion dynamics of the biped robot is realized to linear approximations by installing a high-ratio speed reducer at each joint and dividing motions into a several piecewise linear motions, which is realized by the digital controller design techniques. This biped robot has symmetrical structure to get the stable walking ability and also the hierachical structure to control each joint as well. That is, all of the joint controllers are connected to the main controller in the composition of overall controllers. The driver and controller of each joint uses PI controller that compensate the velocity and position errors by the data of the encoder. And the signal characteristics of each joint controller forms a trapezoid speed profile which is predefined by the values of direction, maximum velocity and position.

  • PDF

Removal of Complexity Management in H.263 Codec for A/VDelivery Systems

  • Jalal, Ahmad;Kim, Sang-Wook
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.931-936
    • /
    • 2006
  • This paper presents different issues of the real-time compression algorithms without compromising the video quality in the distributed environment. The theme of this research is to manage the critical processing stages (speed, information lost, redundancy, distortion) having better encoded ratio, without the fluctuation of quantization scale by using IP configuration. In this paper, different techniques such as distortion measure with searching method cover the block phenomenon with motion estimation process while passing technique and floating measurement is configured by discrete cosine transform (DCT) to reduce computational complexity which is implemented in this video codec. While delay of bits in encoded buffer side especially in real-time state is being controlled to produce the video with high quality and maintenance a low buffering delay. Our results show the performance accuracy gain with better achievement in all the above processes in an encouraging mode.

  • PDF

X-Y table drive characteristic improvement by micro-step driver (마이크로스텝 드라이브를 이용한 X-Y 테이블 구동 특성향상)

  • Ji, Dae-Young;Jin, Seung-Oh;Kim, Sung-Hoon;An, Ho-Kyun;Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2101-2103
    • /
    • 1997
  • In this paper, micro step driving method is used for a high performance motion control and minimizing of vibration in a industrial X-Y table. By using a mathmetical analysis method of 2 phase Hybrid-type step motor, each phase current can be optimized about unit speed and torque. We can improve the electrical and mechnical driving charicteristic of machine by applying this proposed driver to the real plant using microprocessor.

  • PDF

3-D vision sensor system for arc welding robot with coordinated motion by transputer system

  • Ishida, Hirofumi;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.446-450
    • /
    • 1993
  • In this paper we propose an arc welding robot system, where two robots works coordinately and employ the vision sensor. In this system one robot arm holds a welding target as a positioning device, and the other robot moves the welding torch. The vision sensor consists of two laser slit-ray projectors and one CCD TV camera, and is mounted on the top of one robot. The vision sensor detects the 3-dimensional shape of the groove on the target work which needs to be weld. And two robots are moved coordinately to trace the grooves with accuracy. In order to realize fast image processing, totally five sets of high-speed parallel processing units (Transputer) are employed. The teaching tasks of the coordinated motions are simplified considerably due to this vision sensor. Experimental results reveal the applicability of our system.

  • PDF

Development for Scanning Type Stage Driven by Linear Motors (리니어모터를 이용한 고속 저중심 스테이지의 개발과 정밀도 향상)

  • 송창규;김정식;김경호;박천홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.445-448
    • /
    • 2004
  • Linear motor is very rapidly substituted for rotary motor and ball screw for precision positioning applications because of its characteristics such as high speed, no backlash and simplicities. A precision positioning system which is composed of linear motion(LM) guide and linear motor is widely used since it has easy controllable property but this system has low accuracy problem caused by friction of the LM guide. In this study, a scanning type XY stage is manufactured and some experiments is performed to improve the accuracy of the stage.

  • PDF

Global Stage of Reproducibility Experiment for Single Point Diamond Turning (초정밀 선삭가공을 위한 글로벌스테이지의 재현성 실험)

  • Park, Dae-Kwang;Kwak, Nam-Su;Kwon, Dae-Ju;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.982-988
    • /
    • 2013
  • With conventional positioning apparatus, it is very difficult to simultaneously achieve the desired driving range and precision at the sub-micrometer level. Generally, lead screw and friction drive, etc., have been used as servo control systems. These have large driving ranges, and high-speed positioning is feasible. In this study, we present a global servo system controlled by a laser interferometer acting as a displacement measurement sensor for achieving positioning accuracy at the sub-micrometer level.

Computational Study on Dynamic Characteristics of a Flapped Airfoil (전산해석을 이용한 고양력장치의 동특성 고찰)

  • Lee, Yung-Gyo;Kim, Cheol-Wan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206-209
    • /
    • 2011
  • During landing approach, an airplane could experience dynamic unstable motion by the combination of a gust and elevator control to cancel the disturbances. This situation is dangerous and could lead to a loss of an airplane. In this paper, numerical analysis was used to study the effect of pitch oscillating 2-D high lift devices in a landing condition. Experimental data on a pitching naca0012 airfoil was used for code validation. Dynamic characteristics of an airfoil, single slotted flap for mid-class passenger aircraft were analyzed. Unsteady Navier-Stokes analysis was performed with Spalart-Allmaras turbulence model for separation dominant low speed flow. As a result, flow hysteresis of a flapped airfoil was more complex than that of an oscillating airfoil. So, dynamic analysis of a flap in a landing condition is very important for operational safety.

  • PDF

Adaptive Cross-Coupling Controller for Precision Contour Machining (정밀 윤곽가공을 위한 적응 교차축 연동제어기)

  • 윤상필;지성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.8-13
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control (CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. In addition, a real-time federate adaptation scheme is included in the proposed CCC to regulate cutting force. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy and regulates cutting force more effectively than the existing method.

  • PDF

Optimal Design Techniques of the Ultra Precision Cutting Unit through using Optimized Bearing positioning and Latest Lubrication Systems (최적베어링위치결정과 최신의 윤활 시스템을 적용한 초정밀 절삭 유닛의 최적설계기술)

  • Park, Dae-Kwang;Cho, Young-Tae;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.15-22
    • /
    • 2014
  • With a conventional positioning apparatus, it is very difficult simultaneously to achieve desired driving ranges and precision levels at the sub-micrometer level. Generally, a lead screw and friction drive have been used as servo control systems. These have large driving ranges, and high-speed positioning is feasible. In this study, we present a global servo system controlled by a laser interferometer acting as a displacement measurement sensor for achieving positioning accuracy at the sub-micrometer level.

Effect of Golf Shoe Design on Kinematic Variables During Driver Swing (골프화의 구조적 특성 및 내부형태에 따른 스윙의 운동학적 변인에 미치는 영향)

  • Park, Jong-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.167-177
    • /
    • 2009
  • The purpose of this study was to investigate effect of golf shoe design on kinematic variables during golf swing. Five professional male golfers with shoe size 270mm were recruited for the study. Swing motion was collected using 8 high speed camera motion analysis at a sampling of 180Hz. Kinematic variables were calculated by EVaRT 4.2 software. Driver swing was divided into four events; El(adress), E2(top), E3(impact) and E4(finish). Time, peak velocity, velocity of center of mass, velocity of the foot and ankle angle during Phase 1(El-E2), Phase 2(E2-E3), and Phase 3(E3-E4) were analyzed in order to investigate the relationship between golf shoe design and swing performance. The findings indicated that type C golf shoes would be beneficial for stability and control of movement during address and swing performance. Furthermore, faster speed of golf shoes, center of mass, and both feet were observed with Type C golf shoes. It is expected that golfers with Type C golf Shoes provide greater force as they control the center of mass faster and increase rotational force during impact compared to other golf shoes.