• Title/Summary/Keyword: high-speed motion control

Search Result 265, Processing Time 0.026 seconds

A High-Performance Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 위치제어 시스템)

  • Kim, Min-Hoe;Kim, Nam-Hun;Choe, Gyeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.150-157
    • /
    • 2002
  • This paper presents preliminarily an implementation of digital high-performance motion control system of Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320F240 DSP controller made by Texas Instruments. The stator fluff observer is based on the combined voltage and current model with stator flux feedback adaptive control, and the input of the observer are the stator voltage and current of motor terminal for wide speed range. The rotor position and speed sensor used 6000 pulse/rev encoder. In order to prove rightness of the suggested control algorithm, we have some simulation and actual experimental system at $\pm$20 and $\pm$2000 rpm. The developed digitally high-performance motion control system+ are shown a good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.

Implementation of Hybrid System Controller for High-Speed Indoor Navigation of Mobile Robot System Using the Ultra-Sonic Sensors (초음파 센서를 이용한 이동 로봇 시스템의 고속 실내 주행을 위한 하이브리드 시스템 제어기의 구현)

  • Im, Mi-Seop;Im, Jun-Hong;O, Sang-Rok;Yu, Beom-Jae;Yun, In-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.774-782
    • /
    • 2001
  • In this paper, we propose a new approach to the autonomous and high-speed indoor navigation of wheeled mobile robots using hybrid system controller. The hierarchical structure of hybrid system presented consists of high-level reasoning process and the low-level motion control process and the environmental interaction. In a discrete event system, the discrete states are defined by the user-defined constraints and the reference motion commands are specified in the abstracted motions. The hybrid control system applied for the nonholonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoidance in the indoor navigation problem. For the evaluation of the proposed algorithm, the algorithm is implemented to the two-wheel driven mobile robot system. The experimental results show that the hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

Modeling and Synchronizing Motion Control of Twin-servo System

  • Kim, Bong-Keun;Chung, Wan-Kyun;Lee, Kyo-Beum;Song, Joong-Ho;Ick Choy
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.302-305
    • /
    • 1999
  • Twin-servo mechanism is used to increase the payload capacity and speed of high precision motion control system. In this paper, we propose a robust synchronizing motion control algorithm to cancel out the skew motion of twin-servo system caused by different dynamic characteristics of two driving systems and the vibration generated by high accelerating and decelerating motions. This proposed control algorithm consists of separate feedback motion control algorithm of each driving system and skew motion compensation algorithm between two systems. Robust model reference tracking controller is proposed as a separate motion controller and its disturbance attenuation property is shown. For the synchronizing motion, skew motion compensation algorithm is designed, and the stability of whole Closed loop system is proved based on passivity theory.

  • PDF

Effect of Slide Motion Control and Friction Characteristics on Formability of Ultra High Strength Steel (초고강도강판의 성형성에 미치는 슬라이드 모션 제어와 마찰특성의 영향)

  • Song, J.S.;Youn, K.T.;Heo, J.Y.;Park, C.D.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2018
  • Although the application of high strength steel is increasing to cope with the various updated regulations of automobiles, high strength steel sheets are difficult to formulate due to the high tensile strength and low elongation of those materials. In this study, the slide motion was controlled using a servo press in order to improve the formability of the process of manufacturing ultra-high strength steel of above 1.2GPa. Also, the friction characteristics of the slid motion were investigated through a high speed friction test. The slide motion was optimized by adjusting the number of steps, the rising start position and the rise height of the slide. At the same time, it is noted that the optimal slide motion increased the forming depth by about 40%. From the results of the high speed friction test, the application of the slide motion reduces friction resistance, thereby improving friction characteristics and improving formability.

Rotation Speed and Torque Characteristics of Ultrasonic Motor by Phase difference (위상차에 의한 초음파 모터의 속도와 토오크 특성)

  • Kim, Dong-Ok;Ko, Nack-Yon;Choi, Han-Su;Cha, In-Su;Woo, Su-Yong;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.328-330
    • /
    • 1994
  • The Ultrasonic motor(USM) has many good characteristics such as high torque at low speed range, large holding torque based upon frictional force, high speed response, flexible free ferns, compactness in size, low magnetic noise and silentness in motion. Because of having low speed rotation, USM is good as an actuator of a small size direct drive (DD) manipulator. The acturators for the DD manipulators must have good controllability on the speed and torque from zero to maximum value continuously. New method was developed for speed and torque control by the phase difference control of the two-phase driving signals of the motor. Then rule adjustable compliant and dumped motion was realized on the output shaft of the motor by PD control of the output shaft angle.

  • PDF

Fast Processing System for Motion Control of Multi-body Robots (다관절 로봇용 고속 제어보드 개발 및 제어)

  • Sim, Jae-Ik;Kwon, O-Hung;kim, Tae-Sung;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.951-956
    • /
    • 2007
  • This paper suggests a high-speed control method which is suitable for multi-joint robots using a real-time stand-alone controller for general-purpose. The fast processing controller consists of a PCI Interface Board and 2-axe PWM drivers. The PCI Interface Board consists of 32-channel PWM output ports, 32-channel Encoder Counters, 32-channel A/D Converters and 48-channel Digital I/O ports, and all the I/O data transmissions are completed within 1ms. And The 2-axe PWM driver can be redesigned easily in order to embed in each link. Experimental implementations show that the high-speed control method can be used for the real-time control which is essential to controlling of multi-body robots such as humanoid robots. Especially, it is efficient for realizing the model-based motion control in demand of much calculation time by the high I/O communication speed.

  • PDF

Relationship between motion speed and working accuracy of industrial articulated robot arms

  • Goto, Satoru;Nakamura, Masatoshi;Kyura, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.230-233
    • /
    • 1993
  • This paper described a relationship between motion speed and working accuracy of industrial articulated robot arms. Working accuracy of the robot arm deteriorates at high speed operation caused by a nonlinear transformation of the kinematics and the time delay of the robot arm dynamic. The deterioration of the following trajectory was expressed as a linear function of the squares of the robot arm motion speed, depending upon a posture of the robot arm and division interval of the objective trajectory.

  • PDF

Digital Control System for Induction Motor Drive Using DSP (DSP를 이용한 유도전동기 디지털 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 2000
  • This paper presents a implementation of digital motion control system for induction motor vector drives using the 16bit DSP TMS320F240. The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent controllers for motors which can be yield enhanced operation, fewer system components, lower system cost, increased efficiency and high performance. The system presented are speed and current sensing, sine look-up table and generated SVPWM by fully integrated control software. The developed system in a implementation are shown a good speed response and motion control characteristic results, and high performance features in general purposed 2.2[kW] machine. The system can be adapted variform motor drive system.

  • PDF

An Experimental Study on the Active Control of the Motion of Ship Cabin (모델실험에 의한 객실 운동의 능동제어 연구)

  • Bae, Jong-Gug;Lee, Jeh-Won;Joo, Hae-Ho;Shin, Chan-Bai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.106-110
    • /
    • 2002
  • A need fer stable and comfortable cabins in the high-speed passenger ships has increased. For active control of the motion of the ship cabin, a few control algorithms have been applied to the three dimensional real models in the vibration basin. Experimental results show that the feedforward neural network with a linear feedback controller is one of the promising control algorithms for this active control.

Development of Improved 5th Order Motion Profile for Low Vibration and High Speed (저진동, 고속특성을 가지는 개선된 5차 모션 프로파일의 설계)

  • So, Byeong-Kwan;Tae, Won-Hyeong;Kim, Jung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1110-1118
    • /
    • 2012
  • In this study, for reducing the residual vibration in high speed motion control stage, an improved 5th order polynomial motion profile was developed. When a stage is moving, the current through the motor coils has the same profile of input motion profile of acceleration, therefore the characteristics of the acceleration input profile directly affect on the performance of the amplifier that includes the current control loop. Commonly low cost amplifier and motor has a narrow current control bandwidth, therefore the proposed algorithm was designed based on this practical constraint. Simulation and experimental results showed that the proposed algorithm clearly has low residual vibration characteristics than conventional 5th order polynomial motion profile on the same drive condition.