• Title/Summary/Keyword: high-speed learning

Search Result 322, Processing Time 0.03 seconds

A computed torque method incorporating an iterative learning scheme

  • Nam, Kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1097-1112
    • /
    • 1989
  • An iterative learning control scheme is incorporated to the computed torque method as a means to enhance the accuracy and the flexibility. A learning rule is constructed by utilizing a gradient descent algorithm and data compressing techniques are illustrated. Computer simulation results show a good performance of the scheme under a relatively high speed and a heavy payload condition.

  • PDF

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.249-256
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control (FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, FLC and ANN controller.

Fast Face Gender Recognition by Using Local Ternary Pattern and Extreme Learning Machine

  • Yang, Jucheng;Jiao, Yanbin;Xiong, Naixue;Park, DongSun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1705-1720
    • /
    • 2013
  • Human face gender recognition requires fast image processing with high accuracy. Existing face gender recognition methods used traditional local features and machine learning methods have shortcomings of low accuracy or slow speed. In this paper, a new framework for face gender recognition to reach fast face gender recognition is proposed, which is based on Local Ternary Pattern (LTP) and Extreme Learning Machine (ELM). LTP is a generalization of Local Binary Pattern (LBP) that is in the presence of monotonic illumination variations on a face image, and has high discriminative power for texture classification. It is also more discriminate and less sensitive to noise in uniform regions. On the other hand, ELM is a new learning algorithm for generalizing single hidden layer feed forward networks without tuning parameters. The main advantages of ELM are the less stringent optimization constraints, faster operations, easy implementation, and usually improved generalization performance. The experimental results on public databases show that, in comparisons with existing algorithms, the proposed method has higher precision and better generalization performance at extremely fast learning speed.

A study on expression of students in the process of constructing average concept as mathematical knowledge (수학적 지식으로서의 평균 개념 구성 과정에서 나타난 학생들의 표현에 관한 연구)

  • Lee, Dong Gun
    • The Mathematical Education
    • /
    • v.57 no.3
    • /
    • pp.311-328
    • /
    • 2018
  • In school mathematics, the concept of an average is not a concept that is limited to a unit of statistics. In particular, high school students will learn about arithmetic mean and geometric mean in the process of learning absolute inequality. In calculus learning, the concept of average is involved when learning the concept of average speed. The arithmetic mean is the same as the procedure used when students mean the test scores. However, the procedure for obtaining the geometric mean differs from the procedure for the arithmetic mean. In addition, if the arithmetic mean and the geometric mean are the discrete quantity, then the mean rate of change or the average speed is different in that it considers continuous quantities. The average concept that students learn in school mathematics differs in the quantitative nature of procedures and objects. Nevertheless, it is not uncommon to find out how students construct various mathematical concepts into mathematical knowledge. This study focuses on this point and conducted the interviews of the students(three) in the second grade of high school. And the expression of students in the process of average concept formation in arithmetic mean, geometric mean, average speed. This study can be meaningful because it suggests practical examples to students about the assertion that various scholars should experience various properties possessed by the average. It is also meaningful that students are able to think about how to construct the mean conceptual properties inherent in terms such as geometric mean and mean speed in arithmetic mean concept through interview data.

A Cascade-hybrid Recommendation Algorithm based on Collaborative Deep Learning Technique for Accuracy Improvement and Low Latency

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • During the 4th Industrial Revolution, service platforms utilizing diverse contents are emerging, and research on recommended systems that can be customized to users to provide quality service is being conducted. hybrid recommendation systems that provide high accuracy recommendations are being researched in various domains, and various filtering techniques, machine learning, and deep learning are being applied to recommended systems. However, in a recommended service environment where data must be analyzed and processed real time, the accuracy of the recommendation is important, but the computational speed is also very important. Due to high level of model complexity, a hybrid recommendation system or a Deep Learning-based recommendation system takes a long time to calculate. In this paper, a Cascade-hybrid recommended algorithm is proposed that can reduce the computational time while maintaining the accuracy of the recommendation. The proposed algorithm was designed to reduce the complexity of the model and minimize the computational speed while processing sequentially, rather than using existing weights or using a hybrid recommendation technique handled in parallel. Therefore, through the algorithms in this paper, contents can be analyzed and recommended effectively and real time through services such as SNS environments or shared economy platforms.

Maximum Torque Control of an IPMSM Drive Using an Adaptive Learning Fuzzy-Neural Network

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.468-476
    • /
    • 2012
  • The interior permanent magnet synchronous motor (IPMSM) has been widely used in electric vehicle applications due to its excellent power to weigh ratio. This paper proposes the maximum torque control of an IPMSM drive using an adaptive learning (AL) fuzzy neural network (FNN) and an artificial neural network (ANN). This control method is applicable over the entire speed range while taking into consideration the limits of the inverter's rated current and voltage. This maximum torque control is an executed control through an optimal d-axis current that is calculated according to the operating conditions. This paper proposes a novel technique for the high performance speed control of an IPMSM using AL-FNN and ANN. The AL-FNN is a control algorithm that is a combination of adaptive control and a FNN. This control algorithm has a powerful numerical processing capability and a high adaptability. In addition, this paper proposes the speed control of an IPMSM using an AL-FNN, the estimation of speed using an ANN and a maximum torque control using the optimal d-axis current according to the operating conditions. The proposed control algorithm is applied to an IPMSM drive system. This paper demonstrates the validity of the proposed algorithms through result analysis based on experiments under various operating conditions.

On the configuration of learning parameter to enhance convergence speed of back propagation neural network (역전파 신경회로망의 수렴속도 개선을 위한 학습파라메타 설정에 관한 연구)

  • 홍봉화;이승주;조원경
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.159-166
    • /
    • 1996
  • In this paper, the method for improving the speed of convergence and learning rate of back propagation algorithms is proposed which update the learning rate parameter and momentum term for each weight by generated error, changely the output layer of neural network generates a high value in the case that output value is far from the desired values, and genrates a low value in the opposite case this method decreases the iteration number and is able to learning effectively. The effectiveness of proposed method is verified through the simulation of X-OR and 3-parity problem.

  • PDF

Fuzzy-AHP Estimation Technique for Korea High Speed Railway Safety Management (F-AHP 평가수법을 적용한 고속전철 안전성의 평가)

  • Park Tae-Keun;Park Choon-Soo;Seo Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.328-333
    • /
    • 2004
  • Railway is huge traffic system which is operated organically combining all the elements; vehicle, track, electric power, signal/communication, operation, etc. Safety level has ben improved steadily by learning lessons from past accident. But with rapid progress in high-speed, massive, high-frequency transit fresh idea of accident prevention is now in order. In quest of effective and efficient countermeasure, we aim to establish an adequate safety evaluation/management method. Our proposals are basic concept relating to safety analysis of fatal accidents, AHP of Saaty, Fuzzy AHP.

  • PDF

Fuzzy-AHP Estimation Technique for Korea High Speed Railway Safety Management (F-AHP평가수법을 적용한 고속전철 안전성의 평가)

  • 박태근;박춘수;서승일
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.192-198
    • /
    • 2003
  • Railway is huge traffic system which is operated organically combining all the elements; vehicle, track, electric power, signal/communication, operation, etc. Safety level has been improved steadily by learning lessons from past accident. But with rapid progress in high-speed, massive, high-frequency transit fresh idea of accident prevention is now in order. In quest of effective and efficient countermeasure, we aim to establish an adequate safety evaluation/management method. Our proposals are basic concept relating to safety analysis of fatal accidents, AHP of Saaty, Fuzzy AHP.

  • PDF

High Performance Speed Control of IPMSM with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM의 고성능 속도제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • Precise control of interior permanent magnet synchronous motor(IPMSM) over wide speed range is an engineering challenge. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using learning mechanism-fuzzy neural network(LM-FNN) and ANN(artificial neural network) control. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility md numerical processing capability. Also, this paper proposes speed control of IPMSM using LM-FNN and estimation of speed using artificial neural network controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. 'The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Analysis results to verify the effectiveness of the new hybrid intelligent control proposed in this paper.