• Title/Summary/Keyword: high-speed generator

Search Result 439, Processing Time 0.028 seconds

A Study on the Starter Control of the Turbo Generator (터보 제너레이터의 시동기 제어에 관한 연구)

  • 박승엽;노민식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.286-293
    • /
    • 2004
  • This paper presents the result of a study on the starter control for a turbo generator. Because a starter in gear box type turbo-generator system is composed of gearbox and brush DC motor, it should be replaced with High Speed Generator(HSG)) in HSG type Turbo-generator. There-ore, it is necessary to design a new starting algorithm and starter. In gearbox type system, brush DC motor is rotated to the designed speed using low voltage-high current battery power. After brush DC motor speed is increased to several times by gearbox, gas turbine engine can be rotated to designed starting speed. If we implement a starter with High Speed Generator(HSG), it is necessary to drive high-speed generator to high-speed motor. High-speed generator with permanent magnet on rotor has a low leakage inductance fur driving high-speed rotation, and it is necessary high DC link voltage for inverter when High-speed generator is driven to high speed. This paper presents result of development of the boost converter for converting high voltage DC from low battery voltage and design of the inverter for controlling a high frequency current to be injected to motor winding. Also, we show performance of the designed starter by driving the turbo generator.

The Development of the Turbo-Generator System with direct driving High Speed Generator. (고속 발전기 직접 구동 방식의 터보 제너레이터 시스템 개발)

  • 노민식;권정혁;변지섭
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2769-2772
    • /
    • 2003
  • This paper presents results of the development of the Turbo-generator system with structure which is HSG(High Speed Generator) installed to high speed gas-turbine engine directly. Turbo-generator with high speed motor-generator directly has many advantages aspects of weight, size, lubrication system and complexity of the system compared of conventional turbo-generator system with gear-box. But because of direct high speed operation of the high speed generator, we have to need stable high speed motor driving algorithm for perfect engine ignition when gas turbine starting. Also we have to need design of the PCU(Power Conditioning Unit) for converting high speed AC output power to conventional AC power or needed DC power.

  • PDF

The Development of the Turbo Generator System with Direct Driving High Speed Generator (고속 발전기 직접 구동 방식의 터보 제너레이터 시스템 개발)

  • 노민식;박승엽
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.87-94
    • /
    • 2003
  • This paper presents results of the development of the turbo generator system with structure which is HSG(High Speed Generator) installed directly to gas-turbine engine. Turbo generator with a high speed motor-generator directly has many advantages aspects of weight, size, lubrication system and complexity of the system compared of conventional turbo generator system with a gear box. But because of direct high speed operation of the high speed generator, we have to need stable high speed motor driving algorithm for perfect engine ignition when engine start. Also we have to need the design of the Power conditioning unit(PCU) for converting high speed AC output power to conventional AC power or needed DC power.

Implementation of Constant Power Controlled Starter for A Turbo Generator System (터보 발전기 시스템을 위한 정 출력 제어 방식 시동기 구현)

  • 권정혁;양현섭;노민식;차영범
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-222
    • /
    • 2003
  • Turbo generator system need starter for gas turbine engine. Turbo generator has high rate gearbox for reduce rotating speed. Because a conventional generator could not operate same speed of gas turbine engine. But Recently turbo generator system is directly connected a gas turbine engine with a super high-speed generator. In this paper, starter driver are implemented direct coupled turbo generator system, Which is directly connected 100kW, 60,000rpm gas turbine engine and 25kW 60,000rpm super high speed generator.

  • PDF

A Study about Optimization of Laser_repair Condition in EDS Area to Improve the Speed Parameter of High Speed DRAM (High Speed DRAM의 Speed 특성 향상을 위한 EDS Laser_Repair Condition 최적화 방안 연구)

  • Kim, Li-Soon;Han, Young-Shin;Lee, Chil-Gee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.11
    • /
    • pp.1-6
    • /
    • 2002
  • This study is about optimization of Laser Repair Condition in EDS Line to improve AC and DC characteristic of high speed DRAM. The margin of AC parameter can be improved by forcing the proper DC generator levels and also improved by cutting the optional fuse about characteristics.

Development of the Starting Algorithm and Starter for Turbo Generator (터보 제너레이터의 시동 알고리즘 및 시동기 개발)

  • 노민식;박승엽
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • The starter of the turbo generator is composed of a high speed generator(HSG), an inverter and a boost converter instead of a gearbox, a DC motor and a low-voltage battery in the starter of the turbo shaft generation system. Because turbo generator is needed a high speed motoring at start-up, high speed generator has a low leakage inductance and inverter need a high DC link voltage. In this study, for developing the stater of a turbo generator, a boost converter with a high capacity was developed to convert high voltage from a low battery voltage. And for controlling a high frequency current to be injected to a motor winding with a low leakage inductance, the inverter with a high precision and a high speed operation was designed and for a stable ignition, the starting algorithm of a turbo generator was proposed. Turbo generator was started by the starter developed to verify the performances.

High Performance MPPT Based on Variable Speed Generator Driven by Wind Power Generation in Battery Applications

  • Padmanabhan, Sutha;Kaliyappan, Kannan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.205-213
    • /
    • 2014
  • A wind generator (WG) maximum power point tracking (MPPT) system is presented here. It comprises of a variable-speed wind generator, a high-efficiency boost-type dc/dc converter and a control unit. The advantages of the aimed system are that it does not call for the knowledge of the wind speed or the optimal power characteristics and that it operates at a variable speed, thus providing high efficiency. The WG operates at variable speed and thus suffers lower stress on the shafts and gears compared to constant-speed systems. It results in a better exploitation of the available wind energy, especially in the low wind-speed range of 2.5-4.5 m/s. It does not depend on the WG wind and rotor-speed ratings or the dc/dc converter power rating. Higher reliability, lower complexity and cost, and less mechanical stress of the WG. It can be applied to battery-charging applications.

Rotordynamic design of Pulsed Generator (펄스발전기의 로터다이나믹 설계)

  • Kim, Yeong-Chun;Park, Chul-Hyun;Park, Hei-Joo;Moon, Tae-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.805-809
    • /
    • 2002
  • The support bearing requires high DN to raise specific energy efficiency for the state of the art rotating machine with high speed. Especially for the system has a big rotor(670 kgf) with high speed(about one million DNs) such as the pulsed generator, the selection of the bearing and lubrication method are very important. So the study for the critical speed of hollow rotor as well in accordance with high speed rotor and a full analysis are needed for rotor bearing system. This paper describes the analysis for rotor bearing system of pulsed generator compared with experimental data. The bearing and lubrication method are discussed as well with experimental data.

  • PDF

A Study on the High Speed Curve Generator Using 1-Dimensional Systolic Array Processor (1차원 시스톨릭 어레이 프로세서를 이용한 고속 곡선 발생기에 관한 연구)

  • 김용성;조원경
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.1-11
    • /
    • 1994
  • In computer graphics since objects atre constructed by lines and curves, the high-speed curve generator is indispensible for computer aided design and simulatation. Since the functions of graphic generation can be represented as a series of matrix operations, in this paper, two kind of the high-speed Bezier curve generator that uses matrix equation and a recursive relation for Bezier polynomials are designed. And B-spline curve generator is designed using interdependence of B-spline blending functions. As the result of the comparison of designed curve generator and reference [5], [6] in the operation time and number of operators, the curve generator with 1-dimensional systolic array processor for matrix vector operation that uses matrix equation for Bezier curve is more effective.

  • PDF

Influence of Frequency on Electromagnetic Field of Super High-Speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Wang, Wei;Tang, Bingxia;Zhao, Xifang;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.980-988
    • /
    • 2019
  • When compared with traditional power frequency generators, the frequency of a super high-speed permanent magnet generator (SHSPMG) is a lot higher. In order to study the influence of frequency on the electromagnetic field of SHSPMGs, a 60000rpm, 117kW SHSPMG was taken as a research object. The two-dimensional finite element model of the generator was established, and the two-dimensional transient field of the generator was simulated. In addition, a test platform of the generator was set up and tested. The reliability of the simulation was verified by comparing the experiment data with that of the simulation. Then the generator electromagnetic field under different frequencies was studied, and the influence mechanism of frequency on the generator electromagnetic field was revealed. The generator loss, voltage regulation rate, torque and torque ripple were analyzed under the rated active power load and different frequencies. The influences of frequency on the eddy current density, loss, voltage regulation rate and torque ripple of the generator were obtained. These conclusions can provide some reference for the design and optimization of SHSPMGs.