• Title/Summary/Keyword: high-rise structure

Search Result 758, Processing Time 0.028 seconds

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

Seismic response of a high-rise flexible structure under H-V-R ground motion

  • We, Wenhui;Hu, Ying;Jiang, Zhihan
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.169-181
    • /
    • 2022
  • To research the dynamic response of the high-rise structure under the rocking ground motion, which we believed that the effect cannot be ignored, especially accompanied by vertical ground motion. Theoretical analysis and shaking table seismic simulation tests were used to study the response of a high-rise structure to excitation of a H-V-R ground motion that included horizontal, vertical, and rocking components. The use of a wavelet analysis filtering technique to extract the rocking component from data for the primary horizontal component in the first part, based on the principle of horizontal pendulum seismogram and the use of a wavelet analysis filtering technique. The dynamic equation of motion for a high-rise structure under H-V-R ground motion was developed in the second part, with extra P-△ effect due to ground rocking displacement was included in the external load excitation terms of the equation of motion, and the influence of the vertical component on the high-rise structure P-△ effect was also included. Shaking table tests were performed for H-V-R ground motion using a scale model of a high-rise TV tower structure in the third part, while the results of the shaking table tests and theoretical calculation were compared in the last part, and the following conclusions were made. The results of the shaking table test were consistent with the theoretical calculation results, which verified the accuracy of the theoretical analysis. The rocking component of ground motion significantly increased the displacement of the structure and caused an asymmetric displacement of the structure. Thus, the seismic design of an engineering structure should consider the additional P-△ effect due to the rocking component. Moreover, introducing the vertical component caused the geometric stiffness of the structure to change with time, and the influence of the rocking component on the structure was amplified due to this effect.

A Comparative Study on the High-rise Building Designs by Frank Lloyd Wright and Mies van der Rohe (프랭크 로이드 라이트와 미즈 반 데르 로우의 고층건물 디자인 비교연구)

  • Kwon, Jong-Wook
    • Journal of architectural history
    • /
    • v.14 no.3 s.43
    • /
    • pp.89-102
    • /
    • 2005
  • Frank Lloyd Wright and Mies van der Rohe are two of the most influential architects in modern architecture. In spite of the different values in their architectural lives, the design of high-rise building had been a continuous matter of primary concern for them. The purpose of this study is to compare the architectural characteristics of the two master architects in terms of building form, structure, function, and envelop skin. glass. Both of them shared with the principle of organic architecture even in the design of high-rise buildings. However, the specific approaches to realize it in high-rise buildings are significantly different. Although they emphasized the integration of building form and structure, Wright regarded the reinforced concrete structure as an organic form-giver, while Mies introduced the steel skeleton structure only as an efficient and flexible building frame. As primary finishing materials for high-rise buildings, glass was used for functional purpose by Wright, but for visual purpose by Mies.

  • PDF

Comparison on Terror Risk of Large Space Structures and High-rise Buildings in Korea (국내 대공간 건축물과 고층 건축물의 테러위험도 비교)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.105-113
    • /
    • 2016
  • Since the 1980s, the number of large space buildings in Korea has consistently been increasing due to large scale international competitions such as the Olympics and the World Cup, demands for environmental improvement, and development of structural systems. Due to these reasons, this paper conducted a comparative analysis on terrorism risk factors of large space structure and skyscrapers in Korea. The results suggest that the total risk level of high-rise and large space structure was "medium level risk" and that the terrorism risk level for large space structure was as high as that for high-rise buildings. As it relates to the risk levels depending on scenarios, terrorism risks to large space structure were higher than high-rise buildings in the "internal explosion" and "internal intrusion" categories. And the results of analyzing explosion-related scenarios except for CBR suggest that terrorism risks to large space structure were highest when it comes to Internal-Explosive followed by Internal-Intrusion and Explosive-Zone I; and the results showed a regular pattern. On the other hand, in the case of high-rise buildings, terrorism risks were highest in Internal-Explosive followed by Explosive-Zone I and Explosive-Zone II; and the results showed an irregular pattern.

The Research and Application of Innovative High Efficient Construction Technologies in Super High Rise Steel Structure Building

  • Dai, Lixian;Liao, Biao
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.205-214
    • /
    • 2014
  • The super high rise building construction is characterized by a large quantity of engineering works and structural components, high demanding of construction technology and complex cross operations. As the height of super high rise building increases, the construction difficulties increase, it is challenging the steel structural building construction technology. In this paper, the key technologies in the construction of Chinese modern super high rise steel structure building have been studied. The innovative tower crane supporting frame suspension disassembly technology has been developed to allow the crane supporting frame to turnover in the air without occupying materials stockyard. A new self-elevating platform technique which is capable of striding over structural barriers has been developed. This new technology allows the platform to be self-elevated along variable cross section column with a maximum 600 mm size change. A new automatic submerged arc welding technology has also been developed to ensure the process continuity and quality stability of welding job on the construction site.

Structural Design of Nakanoshima Festival Tower West that Achieved High-Grade Seismic Performance

  • Kumano, Takehito;Yoshida, Satoshi;Saburi, Kazuhiro
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.217-226
    • /
    • 2017
  • This paper summarizes the structural concept and design of the "Nakanoshima Festival Tower West" in Osaka, Japan, which is 200m high and has a super-high damping system. Its superstructure is mainly composed of a central core and outer tube frames. It has a bottom truss structure at the boundary between the low-rise and mid-rise sections of the building, where the column arrangement is changed. Besides, the high-rise section of the building has a neck truss structure. These truss structures smoothly transfer the axial forces of the columns and reduce the flexural deformations induced by horizontal loads. Oil dampers with extremely high damping capacity are installed in the rigid walls named the "Big Wall Frames" of the low-rise section. Moreover, many braces and damping devices are well arranged in the center core of each story. The damping effects of these devices ensure that all structural members are remain within the elastic range and that story drifts are within 1/150 in large earthquakes. This super-high damping structure in the low-rise section is named the "Damping Layer". The whole structural system is named the "Super Damping Structure". The whole structural systems enhance the building's safety, comfort and Business Continuity Planning (BCP) under large earthquakes.

Particle Image Velocimetry Measurement of Unsteady Turbulent Flow around Regularly Arranged High-Rise Building Models

  • Sato, T.;Hagishima, A.;Ikegaya, N.;Tanimoto, J.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.105-113
    • /
    • 2013
  • Recent studies proved turbulent flow properties in high-rise building models differ from those in low-rise building models by comparing turbulent statistics. Although it is important to understand the flow characteristics within and above high-rise building models in the study of urban environment, it is still unknown and under investigation. For this reason, we performed wind tunnel experiment using Particle Image Velocimetry (PIV) to investigate and identify the turbulent flow properties and characteristic flow patterns in high-rise building models. In particular, we focus on instantaneous flow field near the canopy and extracted flow field when homogeneous flow field were observed. As a result, six characteristic flow patterns were identified and the relationship between these flow patterns and turbulent organized structure were shown.

Large-scale Seismic Response Analysis of Super-high-rise Steel Building Considering Soil-structure Interaction using K computer

  • Miyamura, Tomoshi;Akiba, Hiroshi;Hori, Muneo
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In the present study, the preliminary results of a large-scale seismic response analysis of a super-high-rise steel frame considering soil-structure interaction are presented. A seismic response analysis under the excitation of the JR Takatori record of the 1995 Hyogoken-Nanbu earthquake is conducted. Precise meshes of a 31-story super-high-rise steel frame and a soil region, which are constructed completely of hexahedral elements, are generated and combined. The parallel large-scale simulation is performed using K computer, which is one of the fastest supercomputers in the world. The results are visualized using an offline rendering code implemented on K computer, and the feasibility of using a very fine mesh of solid elements is investigated. The computation performance of the analysis code on K computer is also presented.

Evaluating high performance steel tube-framed diagrid for high-rise buildings

  • Lee, Dongkyu;Ha, Taehyu;Jung, Miyoung;Kim, Jinho
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.289-303
    • /
    • 2014
  • In recent, development of construction and design technology gives taller, larger and heavier steel framed structures. With the tendency of increasing high-rise building, this study is strongly related to structural system, one of significant components in structural design. This study presents an innovative structural system, with high performance steel material, diagrid. Its detail, structural analysis, and structural experiments are all included for the development of new structures.

Numerical study on Floor Response Spectrum of a Novel High-rise Timber-concrete Structure

  • Xiong, Haibei;Zheng, Yingda;Chen, Jiawei
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.273-282
    • /
    • 2020
  • An innovative high-rise timber-concrete hybrid structure was proposed in previous research, which is composed of the concrete frame-tube structure and the prefabricated timber modules as main structure and substructures, respectively. Considering that the timber substructures are built on the concrete floors at a different height, the floor response spectrum is more effective in estimating the seismic response of substructures. In this paper, the floor response spectra of the hybrid structure with different structural parameters were calculated using dynamic time-history analysis. Firstly, one simplified model that can well predict the seismic response of the hybrid structure was proposed and validated. Then the construction site, the mass ratio and the frequency ratio of the main-sub structure, and the damping ratio of the substructures were discussed. The results demonstrate that the peaks of the floor response spectra usually occur near the vibration periods of the whole structure, among which the first two peaks stand out; In most cases, the acceleration amplification effect on substructures tends to be more evident when the construction site is farther from the fault rupture; On the other hand, the acceleration response of substructures can be effectively reduced with an appropriate increase in the mass ratio of the main-sub structure and the damping ratio of the substructures; However, the frequency ratio of the main-sub structure has no discernible effect on the floor response spectra. This study investigates the characteristics of the floor response spectrum of the novel timber-concrete structure, which supports the future applications of such hybrid structure in high-rise buildings.