• 제목/요약/키워드: high-resolution spatial data

검색결과 764건 처리시간 0.027초

수중음향과 Kompsat-2 위성영상을 이용한 해초지 분포 추정 (Application of Hydroacoustic System and Kompsat-2 Image to Estimate Distribution of Seagrass Beds)

  • 김근용;엄진아;최종국;유주형;김광용
    • 한국해양학회지:바다
    • /
    • 제17권3호
    • /
    • pp.181-188
    • /
    • 2012
  • 해초지의 생태적 중요성에도 불구하고 국내 연안에 분포하는 해초지 규모에 대한 정보가 미비하다. 장흥군 회진면 일대의 해초지를 대상으로 수중음향측심기와 고해상도 Kompsat-2($4{\times}4m$) 위성영상을 이용하여 식생유무를 탐지하고 분포크기를 파악하는 연구가 수행되었다. 위성영상을 이용한 식생분석의 정확도는 음향측심기를 통해 얻은 자료분석과 이를 비교하여 검증되었다. Kompsat-2 영상분석으로 계산된 회진면 일대의 해초지 면적은 약 $3.9km^2$로 수중음향 탐사를 통해 구해진 $4.5km^2$ 보다 과소평가 되었다. Kompsat-2 위성영상을 객체기반 영상분류법으로 해초 식생을 분석한 결과는 수중음향 결과 값에 대해 90%의 정확도를 보였는데, 이와 같이 높은 정확도는 Kappa 지수(0.85)로도 확인되었다. 또한 위성영상과 수중음향 결과 간의 유사도는 77.1%로 비교적 높았다. 생물 비파괴적인 수중음향조사와 Kompsat-2 영상분석으로 국내 연안에 산재해 있는 해초지 식생의 광역적인 조사가 가능할 것으로 기대되며, 보다 정확한 탐지를 위해서 다양한 고해상도 위성을 이용한 연구가 활발히 이루어져야 할 것이다.

고해상도 SAR 위성영상의 스페클 divergence와 객체기반 영상분류를 이용한 주거지역 추출 (Detection of Settlement Areas from Object-Oriented Classification using Speckle Divergence of High-Resolution SAR Image)

  • 송영선
    • 지적과 국토정보
    • /
    • 제47권2호
    • /
    • pp.79-90
    • /
    • 2017
  • 도시지역은 지구상에서 가장 변화가 활발히 일어나는 지역 중의 하나로써, 우리나라에서도 산림지나 녹지, 농경지가 주거지역, 공업지역 등의 주거지역으로 빠르게 변화하고 있다. 이러한 빠른 토지이용의 변화를 모니터링하기 위해서는 신속한 데이터의 취득을 필요로 하게 되고, 위성영상은 이러한 요구의 대안이 될 수 있다. 일반적으로 SAR 위성은 능동적 탐측체계로 영상을 취득하기 때문에 지표면의 거칠기에 따라 영상의 밝기값이 결정되며, 대표적으로 수계영역은 반사강도가 낮아 어둡게 나타나고, 인공구조물이 분포하고 있는 주거지역의 경우 반사강도가 높아 타 지역에 비해 밝기값이 높게 나타난다. 이러한 SAR 영상의 특성을 이용하면 주거지역을 효과적으로 추출할 수 있다. 본 연구에서는 고해상도 X-band SAR 위성인 독일의 TerraSAR-X, 우리나라의 KOMPSAT-5를 이용하여 주거지역의 추출을 수행하였으며, 추출을 위해서 영상분할기법을 통한 객체기반 영상분류를 적용하였다. 영상분할의 정확도를 향상시키기 위해서 스페클 divergence를 먼저 계산하여 주거지역의 반사강도를 조정하였다. 두 위성영상의 정확도 평가를 위해서 추가로 픽셀기반의 K-means 영상분류법을 적용하여 주거지역을 분류하였다. 연구의 결과로써 TerraSAR-X의 객체기반 영상분류법은 약 88.5%, 픽셀기반영상분류법은 75.9%, KOMPSAT-5는 약 87.3%와 74.4%의 overall accuracy를 보였다.

Siemens star를 이용한 드론 영상의 품질 평가 (Quality Evaluation of Drone Image using Siemens star)

  • 이재원;성상민;백기석;윤부열
    • 한국측량학회지
    • /
    • 제40권3호
    • /
    • pp.217-226
    • /
    • 2022
  • 고정밀 공간정보제작 분야의 활용 측면에서 무인항공사진측량은 촬영된 영상의 정량적인 품질 검증 방법과 인증에 대한 절차와 세부 규정이 미흡한 문제점이 있다. 또한, 영상에 대한 검증 수단이 해상도와 명암의 대비 정도를 동시에 분석 할 수 있는 MTF (Modulation Transfer Function) 분석이 아닌 GSD (Ground Sample Distance) 만으로 품질을 평가하고 있어 유인항공영상보다 품질이 떨어지는 경우도 있다. 이에 본 연구에서는 드론 영상 품질 분석에서 MTF 분석의 필요성을 확인하기 위해 Siemens star를 이용하여 GSD와 MTF 분석을 동시에 실시하였다. 서로 다른 드론 기체와 센서로 동일한 해상도로 타겟을 촬영한 영상을 분석한 결과, GSD에서는 약간 상이한 결과를 나타내었지만, 영상의 해상도와 명암의 대비 정도를 동시에 분석할 수 있는 σMTF 수치는 큰 차이를 나타내었다. 이와 같은 결과로 MTF 분석이 보다 객관적이며 신뢰도 높은 품질분석 방법이라고 결론지을 수 있다. 아울러 작업자가 카메라 센서의 성능, 중복도 및 기체의 성능을 적절하게 판단하여 촬영을 실시하여야만 높은 품질의 드론 영상을 획득할 수 있음을 알 수 있었다. 하지만 본 연구는 제한된 기체와 촬영 조건하에서 취득된 영상으로만 분석을 수행한 결과이다. 따라서 향후 관련 분야의 다양한 실험 데이터를 축척하여 지속적인 연구를 수행하면 보다 객관적이고 신뢰성 있는 결과를 도출할 것으로 기대된다

HRNet 모델을 이용한 항공정사영상간 영상 매칭 (Image Matching for Orthophotos by Using HRNet Model)

  • 성선경;최재완
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.597-608
    • /
    • 2022
  • 원격탐사 자료는 재난, 농업, 도시계획 및 군사 등 다양한 분야에서 활용되며, 최근 다양한 고해상도 센서에서 취득된 시계열 자료의 활용에 대한 요구가 증대되고 있다. 본 연구에서는 시계열 원격탐사 자료의 활용을 위해 딥러닝 기법을 이용한 영상 매칭 방법을 제안하였다. 본 연구에서 적용한 딥러닝 모델은 영상분할 영역에서 많이 사용되고 있는 HRNet을 기반으로 하였다. 특히, 기본영상과 목표영상 간 상관도 맵을 효과적으로 계산하고, 학습의 효율을 높이기 위하여 denseblock을 추가하였다. 국토지리정보원의 다시기 항공정사영상을 이용하여 제안된 모델의 학습을 수행하였으며, 학습에 사용하지 않은 자료를 이용하여 평가를 하고자 하였다. 딥러닝 모델을 이용한 영상매칭 성능을 평가하기 위해 영상 매칭결과와의 비교평가를 수행하였다. 실험 결과, 제안기법을 통한 영상 매칭률이 80%일 때의 평균 오차는 3화소로 ZNCC에 의한 결과인 25화소에 비해 더 높은 정확도를 보였다. 제안된 기법은 식생의 생장에 따라 영상의 변화가 심한 산지 및 농지 지역에 대해서도 효과적임을 확인하였다. 이를 통해 딥러닝을 이용한 기준영상과 목표영상의 매칭을 수행할 수 있을 것으로 판단되며, 위성영상의 상호좌표등록 및 다시기 영상의 정합 등에 활용할 수 있을 것으로 예상된다.

드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발 (Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing)

  • 정경수;고승환;이경규;박종화
    • 농촌계획
    • /
    • 제30권1호
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

1:25,000 수치지도를 이용한 RapidEye 위성영상의 좌표등록 정확도 자동 향상 (Automated Improvement of RapidEye 1-B Geo-referencing Accuracy Using 1:25,000 Digital Maps)

  • 오재홍;이창노
    • 한국측량학회지
    • /
    • 제32권5호
    • /
    • pp.505-513
    • /
    • 2014
  • 2008년 발사된 RapidEye는 5개의 위성을 기반으로 하여 6.5m 공간 해상도의 위성 영상을 하루 간격으로 취득할 수 있는 높은 시간 해상도 특징을 갖는 지구관측위성이다. 제품으로 1B(Basic)와 3A(Ortho)를 제공하고 있으며, 이 중 1B 영상은 좌표등록이 되지 않고 RPCs 정보를 함께 제공해준다. 국내에서는 기 구축된 수치지도를 기반으로 하여 RapidEye의 기하학적 정확도를 보다 향상시킬 수 있으며, 본 논문에서는 1:25,000 수치지도를 이용하여 자동으로 RapidEye 1B영상의 좌표등록을 수행하기 위한 연구를 수행하였다. 1:25,000 수치지도 중 RapidEye 영상과의 매칭에 활용될 레이어를 선별하여 RPCs를 기반으로 RapidEye 1B영상으로 투영시켜 벡터 영상을 생성하고 이와 RapidEye영상의 에지 정보와의 자동 매칭을 통해 RPCs의 정확도를 향상시켰다. 실험 결과 수치지도 대비하여 평균 제곱근 오차 2.8픽셀의 오차가 0.8픽셀로 향상됨을 알 수 있었다.

아리랑 3호 스테레오 위성영상의 DEM 제작 성능 분석 (A Study on DEM Generation from Kompsat-3 Stereo Images)

  • 오재홍;서두천;이창노
    • 한국측량학회지
    • /
    • 제32권1호
    • /
    • pp.19-27
    • /
    • 2014
  • 2012년 5월 발사된 다목적 실용위성 아리랑 3호는 단일 패스 상에서 0.7m의 공간해상도로 스테레오 영상을 획득할 수 있어 기존의 아리랑 2호에 비해 고품질의 Digital Elevation Model(DEM) 추출이 가능하다. 통상적으로 DEM 추출을 위해서는 영상 전반에 걸쳐 골고루 취득된 정밀한 기준점을 사용하여 센서모델링을 수행하고, 스테레오 매칭을 수행해야하나, 해외 지역이나 접근이 힘든 지역 등 GPS측량이 쉽지 않은 지역의 경우에는 무기준점 또는 기준점을 최소화하거나 기 구축된 공간 데이터를 활용하는 등의 방법으로 DEM을 추출해야 한다. 따라서 본 연구에서는 아리랑 3호 데이터로부터 무기준점 기반, 상대표정 기반, 단일 기준점 등 여러 가지 Rational Polynomial Coefficients(RPC) 처리 조건에 따라 DEM을 생성하고 정확도를 평가하였다. 기 구축된 공간영상인 Digital Orthophoto Quadrangle(DOQ) 와 Shuttle Radar Topography Mission(SRTM)을 기준점 자료로 활용하여 미국지역 아리랑3호 스테레오 데이터를 대상으로 DEM을 생성하였으며, LiDAR DEM을 이용하여 정확도를 평가하였다. 실험 결과 무기준점인 경우 상대표정을 통해 의미 있는 정확도 향상을 얻을 수 있었고, DOQ와 SRTM 조합의 단일 기준점으로도 영상 전반에 걸쳐 기준점을 획득한 경우에 근접하는 7m 정도의 DEM 정확도를 확보할 수 있었다.

SAR 영상 정합 정확도 평가를 위한 FSIM 인자 활용 가능성 (Feasibility Study on FSIM Index to Evaluate SAR Image Co-registration Accuracy)

  • 김상완;이동준
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.847-859
    • /
    • 2021
  • 최근 고해상도 위성 SAR 영상이 늘어남에 따라, 변화탐지, 영상 융합 등 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 커지고 있다. 영상 정합 결과에 대한 정량적 평가는 분석자에 의해 추출된 GCPs (Ground Control Points)를 이용한 RMSE (Root Mean Square Error) 값이 널리 사용되어 왔으나, 영상정합 결과의 정확도를 자동으로 측정하는 방법에 대한 연구는 미비한 실정이다. 본 연구에서는 SAR 영상 정합의 정확도 평가지표로, 단일채널 영상의 품질 평가 알고리즘으로 개발된 FSIM (Feature Similarity) 값을 적용하는 것에 대한 타당성 분석을 수행하였다. 다양한 관측각도 및 관측방향에서 수집된 TerraSAR-X staring spotlight 자료를 분석에 사용하였다. SAR 영상의 공간 해상도에 따른 FSIM 값 변화는 매우 작은 값을 보였다. 따라서, 다양한 공간해상도의 SAR 영상 간에도 동일한 척도를 가지고 FSIM 값을 사용할 수 있다. 단일 SAR 영상을 이용하여 정합 오차에 따른 FSIM값 변화를 분석하였으며, 이 값을 기준으로 서로 다른 관측조건에서 수집된 영상 간의 정합 오차에 따른 FSIM 값 변화를 분석하였다. 서로 다른 관측각 또는 관측방향 자료 조합에서, 관측기하 차이에 의해 FSIM 값은 다소 저하되었다. 토지피복별 FSIM 값 분석 결과에서, 도심지역에서 정합오차에 따른 FSIM 값의 변화가 가장 뚜렷하게 나타났다. 따라서, FSIM 값을 이용하여 영상정합의 정확도를 판별하기 위해서는 도심지역에서 산출된 FSIM 값을 이용하는 것이 바람직하다. FSIM 값은 SAR 영상 정합 정확도에 대한 지표로 사용될 수 있는 충분한 가능성이 있는 것으로 판단된다.

수리 모형을 이용한 Korea Land Data Assimilation System (KLDAS) 자료의 수문자료에 대한 영향력 분석 (Interactions between Soil Moisture and Weather Prediction in Rainfall-Runoff Application : Korea Land Data Assimilation System(KLDAS))

  • 정용;최민하
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.172-172
    • /
    • 2011
  • The interaction between land surface and atmosphere is essentially affected by hydrometeorological variables including soil moisture. Accurate estimation of soil moisture at spatial and temporal scales is crucial to better understand its roles to the weather systems. The KLDAS(Korea Land Data Assimilation System) is a regional, specifically Korea peninsula land surface information systems. As other prior land data assimilation systems, this can provide initial soil field information which can be used in atmospheric simulations. For this study, as an enabling high-resolution tool, weather research and forecasting(WRF-ARW) model is applied to produce precipitation data using GFS(Global Forecast System) with GFS embedded and KLDAS soil moisture information as initialization data. WRF-ARW generates precipitation data for a specific region using different parameters in physics options. The produced precipitation data will be employed for simulations of Hydrological Models such as HEC(Hydrologic Engineering Center) - HMS(Hydrologic Modeling System) as predefined input data for selected regional water responses. The purpose of this study is to show the impact of a hydrometeorological variable such as soil moisture in KLDAS on hydrological consequences in Korea peninsula. The study region, Chongmi River Basin, is located in the center of Korea Peninsular. This has 60.8Km river length and 17.01% slope. This region mostly consists of farming field however the chosen study area placed in mountainous area. The length of river basin perimeter is 185Km and the average width of river is 9.53 meter with 676 meter highest elevation in this region. We have four different observation locations : Sulsung, Taepyung, Samjook, and Sangkeug observatoriesn, This watershed is selected as a tentative research location and continuously studied for getting hydrological effects from land surface information. Simulations for a real regional storm case(June 17~ June 25, 2006) are executed. WRF-ARW for this case study used WSM6 as a micro physics, Kain-Fritcsch Scheme for cumulus scheme, and YSU scheme for planetary boundary layer. The results of WRF simulations generate excellent precipitation data in terms of peak precipitation and date, and the pattern of daily precipitation for four locations. For Sankeug observatory, WRF overestimated precipitation approximately 100 mm/day on July 17, 2006. Taepyung and Samjook display that WRF produced either with KLDAS or with GFS embedded initial soil moisture data higher precipitation amounts compared to observation. Results and discussions in detail on accuracy of prediction using formerly mentioned manners are going to be presented in 2011 Annual Conference of the Korean Society of Hazard Mitigation.

  • PDF

미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합 (Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs)

  • 이희진;서찬양;조정호;남원호
    • 대한원격탐사학회지
    • /
    • 제39권5_4호
    • /
    • pp.1135-1144
    • /
    • 2023
  • 국내 농업용 저수지는 1970년 이전에 축조되어 준공 년도가 50년 이상 된 노후화된 시설이 대다수이며, 소규모 저수지는 기본 제원 및 수위 등을 파악할 수 있는 계측시스템이 없는 미계측 저수지이다. 준공 이후 호우발생 시 퇴적된 토사 유입, 퇴사량 증가에 따른 저수지 용량 감소 및 산업 고도화에 따른 수질악화 등은 저수지의 용수공급능력을 저하시키고 형상 변화를 야기한다. 따라서, 디지털 정보 및 원격탐사 정보를 결합한 계측 기술을 활용하여 미계측 저수지 수체 모니터링을 위한 공간정보 구축 방안이 필요하다. 본 연구에서는 지표면의 고도정보와 형태를 파악할 수 있는 Light Detection And Ranging (LiDAR) 센서를 활용하여 저수지 시설물의 고해상도 Digital Surface Model (DSM), Digital Elevation Model (DEM) 자료를 구축하고, 멀티빔(MultiBeam) 음향 측심기 기반 수심측량 정보의 융합을 통해 디지털 공간정보 융합 방안을 제시하고자 한다. 드론용 LiDAR를 활용하여 공간해상도 50 cm의 DSM 및 DEM 자료를 구축하여, 저수지 제방, 여수로, 용수로 등의 수리시설물의 디지털 공간정보를 구축하였다. 다분광 영상을 활용하여 수체를 탐지하기 위해 정규식생지수(Normalized Difference Vegetation Index, NDVI), 정규수분지수(Normalized Difference Water Index, NDWI)를 산정하여, 저수지의 수표면을 산정하였다. 또한, 고해상도 DEM 자료는 수심측량 자료와 융합하여 수심도를 작성하였으며, Triangulated Irregular Network (TIN)로부터 저수지 만수면적 및 체적을 산정하였다. LiDAR 센서 및 멀티빔 기반의 수심측량, 광학위성자료 영상 및 다중분광 드론영상을 활용한 수체 탐지 기술 등의 공간정보 융합은 미계측 저수지의 디지털 인프라를 구축하여 저수지의 가용용수공급능력을 모니터링 하기 위한 기초자료로서 활용성이 높을 것으로 사료된다.