• 제목/요약/키워드: high-resolution spatial data

검색결과 758건 처리시간 0.028초

고해상도 다중분광영상 제작을 위한 합성방법의 비교 (Comparison of Image Merging Methods for Producing High-Spatial Resolution Multispectral Images)

  • 김윤형;이규성
    • 대한원격탐사학회지
    • /
    • 제16권1호
    • /
    • pp.87-98
    • /
    • 2000
  • 상업위성에서 공급되는 고해상도영상의 활용을 증대하기 위한 영상합성에 대한 관심이 증가하고 있다. 합성에 사용된 고해상도 흑백영상과 저해상도 다중분광영상은 항공기탑재 다중분광 주사기에 의해 촬영된 네 밴드의 영상을 이용하여 모의 제작하였다. 모의 합성된 2rl 해상도의 흑백 영상과 Bnl 해상도의 네 밴드 영상에 대하여 다섯 가지 합성방법(MWD, ItIS, PCA, HPF, CN, PCA) 을 적용하였다. 합성된 영상에 대해서 원래 영상들이 가지고 있던 공간해상도와 분광정보 측면의 특성을 분석하고자, 육안판독, 통계치비교, semivariogram, 분광반사특성 등을 비교하였다. MWD 변환방법에 의하여 합성된 영상이 공간해상도 및 분광정보 측면에서 모두 합성에 사용된 원래 영상과 근접한 결과를 보였다.

Multi- Resolution MSS Image Fusion

  • Ghassemian, Hassan;Amidian, Asghar
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.648-650
    • /
    • 2003
  • Efficient multi-resolution image fusion aims to take advantage of the high spectral resolution of Landsat TM images and high spatial resolution of SPOT panchromatic images simultaneously. This paper presents a multi-resolution data fusion scheme, based on multirate image representation. Motivated by analytical results obtained from high-resolution multispectral image data analysis: the energy packing the spectral features are distributed in the lower frequency bands, and the spatial features, edges, are distributed in the higher frequency bands. This allows to spatially enhancing the multispectral images, by adding the high-resolution spatial features to them, by a multirate filtering procedure. The proposed method is compared with some conventional methods. Results show it preserves more spectral features with less spatial distortion.

  • PDF

Building DSMs Generation Integrating Three Line Scanner (TLS) and LiDAR

  • Suh, Yong-Cheol;Nakagawa , Masafumi
    • 대한원격탐사학회지
    • /
    • 제21권3호
    • /
    • pp.229-242
    • /
    • 2005
  • Photogrammetry is a current method of GIS data acquisition. However, as a matter of fact, a large manpower and expenditure for making detailed 3D spatial information is required especially in urban areas where various buildings exist. There are no photogrammetric systems which can automate a process of spatial information acquisition completely. On the other hand, LiDAR has high potential of automating 3D spatial data acquisition because it can directly measure 3D coordinates of objects, but it is rather difficult to recognize the object with only LiDAR data, for its low resolution at this moment. With this background, we believe that it is very advantageous to integrate LiDAR data and stereo CCD images for more efficient and automated acquisition of the 3D spatial data with higher resolution. In this research, the automatic urban object recognition methodology was proposed by integrating ultra highresolution stereo images and LiDAR data. Moreover, a method to enable more reliable and detailed stereo matching method for CCD images was examined by using LiDAR data as an initial 3D data to determine the search range and to detect possibility of occlusions. Finally, intellectual DSMs, which were identified urban features with high resolution, were generated with high speed processing.

Region Growing Segmentation with Directional Features

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.731-740
    • /
    • 2010
  • A region merging technique is suggested in this paper for the segmentation of high-spatial resolution imagery. It employs a region growing scheme based on the region adjacency graph (RAG). The proposed algorithm uses directional neighbor-line average feature vectors to improve the quality of segmentation. The feature vector consists of 9 components which includes an observation and 8 directional averages. Each directional average is the average of the pixel values along the neighbor line for a given neighbor line length at each direction. The merging coefficients of the segmentation process use a part of the feature components according to a given merging coefficient order. This study performed the extensive experiments using simulation data and a real high-spatial resolution data of IKONOS. The experimental results show that the new approach proposed in this study is quite effective to provide segments of high quality for the object-based analysis of high-spatial resolution images.

GENERATION OF FOREST FRACTION MAP WITH MODIS IMAGES USING ENDMEMBER EXTRACTED FROM HIGH RESOLUTION IMAGE

  • Kim, Tae-Geun;Lee, Kyu-Sung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.468-470
    • /
    • 2007
  • This paper is to present an approach for generating coarse resolution (MODIS data) fraction images of forested region in Korea peninsula using forest type area fraction derived from high resolution data (ASTER data) in regional forest area. A 15-m spatial resolution multi-spectral ASTER image was acquired under clear sky conditions on September 22, 2003 over the forested area near Seoul, Korea and was used to select each end-member that represent a pure reflectance of component of forest such as different forest, bare soil and water. The area fraction of selected each end-member and a 500-m spatial resolution MODIS reflectance product covering study area was applied to a linear mixture inversion model for calculating the fraction image of forest component across the South Korea. We found that the area fraction values of each end-member observed from high resolution image data could be used to separate forest cover in low resolution image data.

  • PDF

지형자료 해상도에 따른 대기 유동장 변화에 관한 수치 연구 (Numerical Study on Atmospheric Flow Variation Associated With the Resolution of Topography)

  • 이순환;김선희;류찬수
    • 한국환경과학회지
    • /
    • 제15권12호
    • /
    • pp.1141-1154
    • /
    • 2006
  • Orographic effect is one of the important factors to induce Local circulations and to make atmospheric turbulence, so it is necessary to use the exact topographic data for prediction of local circulations. In order to clarify the sensitivity of the spatial resolution of topography data, numerical simulations using several topography data with different spatial resolution are carried out under stable and unstable synoptic conditions. The results are as follows: 1) Influence of topographic data resolution on local circulation tends to be stronger at simulation with fine grid than that with coarse grid. 2) The hight of mountains in numerical model become mote reasonable with high resolution topographic data, so the orographic effect is also emphasized and clarified when the topographic data resolution is higher. 2) The higher the topographic resolution is, the stronger the mountain effect is. When used topographic data resolution become fine, topography in numerical model becomes closer to real topography. 3) The topographic effect tends to be stronger when atmospheric stability is strong stable. 4) Although spatial resolution of topographic data is not fundamental factor for dramatic improvement of weather prediction accuracy, some influence on small scale circulation can be recognized, especially in fluid dynamic simulation.

MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가 (Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images)

  • 박종화;나상일
    • 한국환경복원기술학회지
    • /
    • 제9권6호
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.

Impact of Trend Estimates on Predictive Performance in Model Evaluation for Spatial Downscaling of Satellite-based Precipitation Data

  • Kim, Yeseul;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제33권1호
    • /
    • pp.25-35
    • /
    • 2017
  • Spatial downscaling with fine resolution auxiliary variables has been widely applied to predict precipitation at fine resolution from coarse resolution satellite-based precipitation products. The spatial downscaling framework is usually based on the decomposition of precipitation values into trend and residual components. The fine resolution auxiliary variables contribute to the estimation of the trend components. The main focus of this study is on quantitative analysis of impacts of trend component estimates on predictive performance in spatial downscaling. Two regression models were considered to estimate the trend components: multiple linear regression (MLR) and geographically weighted regression (GWR). After estimating the trend components using the two models,residual components were predicted at fine resolution grids using area-to-point kriging. Finally, the sum of the trend and residual components were considered as downscaling results. From the downscaling experiments with time-series Tropical Rainfall Measuring Mission (TRMM) 3B43 precipitation data, MLR-based downscaling showed the similar or even better predictive performance, compared with GWR-based downscaling with very high explanatory power. Despite very high explanatory power of GWR, the relationships quantified from TRMM precipitation data with errors and the auxiliary variables at coarse resolution may exaggerate the errors in the trend components at fine resolution. As a result, the errors attached to the trend estimates greatly affected the predictive performance. These results indicate that any regression model with high explanatory power does not always improve predictive performance due to intrinsic errors of the input coarse resolution data. Thus, it is suggested that the explanatory power of trend estimation models alone cannot be always used for the selection of an optimal model in spatial downscaling with fine resolution auxiliary variables.

Land Cover Super-resolution Mapping using Hopfield Neural Network for Simulated SPOT Image

  • Nguyen, Quang Minh
    • 한국측량학회지
    • /
    • 제30권6_2호
    • /
    • pp.653-663
    • /
    • 2012
  • Using soft classification, it is possible to obtain the land cover proportions from the remotely sensed image. These land cover proportions are then used as input data for a procedure called "super-resolution mapping" to produce the predicted hard land cover layers at higher resolution than the original remotely sensed image. Superresolution mapping can be implemented using a number of algorithms in which the Hopfield Neural Network (HNN) has showed some advantages. The HNN has improved the land cover classification through superresolution mapping greatly with the high resolution data. However, the super-resolution mapping is based on the spatial dependence assumption, therefore it is predicted that the accuracy of resulted land cover classes depends on the relative size of spatial features and the spatial resolution of the remotely sensed image. This research is to evaluate the capability of HNN to implement the super-resolution mapping for SPOT image to create higher resolution land cover classes with different zoom factor.

Backward estimation of precipitation from high spatial resolution SAR Sentinel-1 soil moisture: a case study for central South Korea

  • Nguyen, Hoang Hai;Han, Byungjoo;Oh, Yeontaek;Jung, Woosung;Shin, Daeyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.329-329
    • /
    • 2022
  • Accurate characterization of terrestrial precipitation variation from high spatial resolution satellite sensors is beneficial for urban hydrology and microscale agriculture modeling, as well as natural disasters (e.g., urban flooding) early warning. However, the widely-used top-down approach for precipitation retrieval from microwave satellites is limited in several hydrological and agricultural applications due to their coarse spatial resolution. In this research, we aim to apply a novel bottom-up method, the parameterized SM2RAIN, where precipitation can be estimated from soil moisture signals based on an inversion of water balance model, to generate high spatial resolution terrestrial precipitation estimates at 0.01º grid (roughly 1-km) from the C-band SAR Sentinel-1. This product was then tested against a common reanalysis-based precipitation data and a domestic rain gauge network from the Korean Meteorological Administration (KMA) over central South Korea, since a clear difference between climatic types (coasts and mainlands) and land covers (croplands and mixed forests) was reported in this area. The results showed that seasonal precipitation variability strongly affected the SM2RAIN performances, and the product derived from separated parameters (rainy and non-rainy seasons) outperformed that estimated considering the entire year. In addition, the product retrieved over the mainland mixed forest region showed slightly superior performance compared to that over the coastal cropland region, suggesting that the 6-day time resolution of S1 data is suitable for capturing the stable precipitation pattern in mainland mixed forests rather than the highly variable precipitation pattern in coastal croplands. Future studies suggest comparing this product to the traditional top-down products, as well as evaluating their integration for enhancing high spatial resolution precipitation over entire South Korea.

  • PDF