• Title/Summary/Keyword: high-resolution satellite images

Search Result 583, Processing Time 0.028 seconds

Analysis of the Cloud Removal Effect of Sentinel-2A/B NDVI Monthly Composite Images for Rice Paddy and High-altitude Cabbage Fields (논과 고랭지 배추밭 대상 Sentinel-2A/B 정규식생지수 월 합성영상의 구름 제거 효과 분석)

  • Eun, Jeong;Kim, Sun-Hwa;Kim, Taeho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1545-1557
    • /
    • 2021
  • Crops show sensitive spectral characteristics according to their species and growth conditions and although frequent observation is required especially in summer, it is difficult to utilize optical satellite images due to the rainy season. To solve this problem, Constrained Cloud-Maximum Normalized difference vegetation index Composite (CC-MNC) algorithm was developed to generate periodic composite images with minimal cloud effect. In thisstudy, using this method, monthly Sentinel-2A/B Normalized Difference Vegetation Index (NDVI) composite images were produced for paddies and high-latitude cabbage fields from 2019 to 2021. In August 2020, which received 200mm more precipitation than other periods, the effect of clouds, was also significant in MODIS NDVI 16-day composite product. Except for this period, the CC-MNC method was able to reduce the cloud ratio of 45.4% of the original daily image to 14.9%. In the case of rice paddy, there was no significant difference between Sentinel-2A/B and MODIS NDVI values. In addition, it was possible to monitor the rice growth cycle well even with a revisit cycle 5 days. In the case of high-latitude cabbage fields, Sentinel-2A/B showed the short growth cycle of cabbage well, but MODIS showed limitations in spatial resolution. In addition, the CC-MNC method showed that cloud pixels were used for compositing at the harvest time, suggesting that the View Zenith Angle (VZA) threshold needsto be adjusted according to the domestic region.

Dimensionality Reduction Methods Analysis of Hyperspectral Imagery for Unsupervised Change Detection of Multi-sensor Images (이종 영상 간의 무감독 변화탐지를 위한 초분광 영상의 차원 축소 방법 분석)

  • PARK, Hong-Lyun;PARK, Wan-Yong;PARK, Hyun-Chun;CHOI, Seok-Keun;CHOI, Jae-Wan;IM, Hon-Ryang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2019
  • With the development of remote sensing sensor technology, it has become possible to acquire satellite images with various spectral information. In particular, since the hyperspectral image is composed of continuous and narrow spectral wavelength, it can be effectively used in various fields such as land cover classification, target detection, and environment monitoring. Change detection techniques using remote sensing data are generally performed through differences of data with same dimensions. Therefore, it has a disadvantage that it is difficult to apply to heterogeneous sensors having different dimensions. In this study, we have developed a change detection method applicable to hyperspectral image and high spat ial resolution satellite image with different dimensions, and confirmed the applicability of the change detection method between heterogeneous images. For the application of the change detection method, the dimension of hyperspectral image was reduced by using correlation analysis and principal component analysis, and the change detection algorithm used CVA. The ROC curve and the AUC were calculated using the reference data for the evaluation of change detection performance. Experimental results show that the change detection performance is higher when using the image generated by adequate dimensionality reduction than the case using the original hyperspectral image.

URBAN ENVIRONMENTAL QUALITY ANALYSIS USING LANDSAT IMAGES OVER SEOUL, KOREA

  • Lee, Kwon-H.;Wong, Man-Sing;Kim, Gwan-C.;Kim, Young-J.;Nichol, Janet
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.556-559
    • /
    • 2007
  • The Urban Environmental Quality (UEQ) indicates a complex and various parameters resulting from both human and natural factors in an urban area. Vegetation, climate, air quality, and the urban infrastructure may interact to produce effects in an urban area. There are relationships among air pollution, vegetation, and degrading environmental the urban heat island (UHI) effect. This study investigates the application of multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air quality and UHI intensity in Seoul from 2000 to 2006 in fine resolution (30m) using the emissivity-fusion method. The Haze Optimized Transform (HOT) correction approach has been adopted for atmospheric correction on all bands except thermal band. The general UHI values (${\Delta}(T_{urban}-T_{rural})$) are 8.45 (2000), 9.14 (2001), 8.61 (2002), and $8.41^{\circ}C$ (2006), respectively. Although the UHI values are similar during these years, the spatial coverage of "hot" surface temperature (>$24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84(2002), and 0.89 (2006), respectively. Air quality is shown to be an important factor in the spatial variation of UEQ. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

  • PDF

Grounding Line of Campbell Glacier in Ross Sea Derived from High-Resolution Digital Elevation Model (고해상도 DEM을 활용한 로스해 Campbell 빙하의 지반접지선 추정)

  • Kim, Seung Hee;Kim, Duk-jin;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.545-552
    • /
    • 2018
  • Grounding line is used as evidence of the mass balance showing the vulnerability of Antarctic glaciers and ice shelves. In this research, we utilized a high resolution digital elevation model of glacier surface derived by recently launched satellites to estimate the position of grounding line of Campbell Glacier in East Antarctica. TanDEM-X and TerraSAR-X data in single-pass interferometry mode were acquired on June 21, 2013 and September 10, 2016 and CryoSat-2 radar altimeter data were acquired within 15 days from the acquisition date of TanDEM-X. The datasets were combined to generate a high resolution digital elevation model which was used to estimate the grounding line position. During the 3 years of observation, there weren't any significant changes in grounding line position. Since the average density of ice used in estimating grounding line is not accurately known, the variations of the grounding line was analyzed with respect to the density of ice. There was a spatial difference from the grounding line estimated by DDInSAR whereas the estimated grounding line using the characteristics of the surface of the optical satellite images agreed well when the ice column density was about $880kg/m^3$. Although the reliability of the results depends on the vertical accuracy of the bathymetry in this study, the hydrostatic ice thickness has greater influence on the grounding line estimation.

Hierarchical Land Cover Classification using IKONOS and AIRSAR Images (IKONOS와 AIRSAR 영상을 이용한 계층적 토지 피복 분류)

  • Yeom, Jun-Ho;Lee, Jeong-Ho;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.435-444
    • /
    • 2011
  • The land cover map derived from spectral features of high resolution optical images has low spectral resolution and heterogeneity in the same land cover class. For this reason, despite the same land cover class, the land cover can be classified into various land cover classes especially in vegetation area. In order to overcome these problems, detailed vegetation classification is applied to optical satellite image and SAR(Synthetic Aperture Radar) integrated data in vegetation area which is the result of pre-classification from optical image. The pre-classification and vegetation classification were performed with MLC(Maximum Likelihood Classification) method. The hierarchical land cover classification was proposed from fusion of detailed vegetation classes and non-vegetation classes of pre-classification. We can verify the facts that the proposed method has higher accuracy than not only general SAR data and GLCM(Gray Level Co-occurrence Matrix) texture integrated methods but also hierarchical GLCM integrated method. Especially the proposed method has high accuracy with respect to both vegetation and non-vegetation classification.

Compression of Multispectral Images (멀티 스펙트럴 영상들의 압축)

  • Enrico Piazza
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.28-39
    • /
    • 2003
  • This paper is an overview of research contributions by the authors to the use of compression techniques to handle high resolution, multi-spectral images. Originally developed in the remote sensing context, the same techniques are here applied to food and medical images. The objective is to point out the potential of this kind of processing in different contexts such as remote sensing, food monitoring, and medical imaging and to stimulate new research exploitations. Compression is based on the simple assumption that it is possible to find out a relationship between pixels close one each other in multi-spectral images it translates to the possibility to say that there is a certain degree of correlation within pixels belonging to the same band in a close neighbourhood. Once found a correlation based on certain coefficient on one band, the coefficients of this relationship are, in turn, quite probably, similar to the ones calculated in one of the other bands. Based upon this second observation, an algorithm was developed, able to reduce the number of bit/pixel from 16 to 4 in satellite remote sensed multi-spectral images. A comparison is carried out between different methods about their speed and compression ratio. As reference it was taken the behaviour of three common algorithms, LZW (Lempel-Ziv-Welch), Huffman and RLE (Run Length Encoding), as they are used in common graphic format such as GIF, JPEG and PCX. The Presented methods have similar results in both speed and compression ratio to the commonly used programs and are to be preferred when the decompression must be carried out on line, inside a main program or when there is the need of a custom made compression algorithm.

  • PDF

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

A Study on the Detection and Statistical Feature Analysis of Red Tide Area in South Coast Using Remote Sensing (원격탐사를 이용한 남해안의 적조영역 검출과 통계적 특징 분석에 관한 연구)

  • Sur, Hyung-Soo;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.65-70
    • /
    • 2007
  • Red tide is becoming hot issue of environmental problem worldwide since the 1990. Advanced nations, are progressing study that detect red tide area on early time using satellite for sea. But, our country most seashores bends serious. Also because there are a lot of turbid method streams on coast, hard to detect small red tide area by satellite for sea that is low resolution. Also, method by sea color that use one feature of satellite image for sea of existent red tide area detection was most. In this way, have a few feature in image with sea color and it can cause false negative mistake that detect red tide area. Therefore, in this paper, acquired texture information to use GLCM(Gray Level Co occurrence Matrix)'s texture 6 information about high definition land satellite south Coast image. Removed needless component reducing dimension through principal component analysis from this information. And changed into 2 principal component accumulation images, Experiment result 2 principal component conversion accumulation image's eigenvalues were 94.6%. When component with red tide area that uses only sea color image and all principal component image. displayed more correct result. And divided as quantitative,, it compares with turbid stream and the sea that red tide does not exist using statistical feature analysis about texture.

Estimation of Storage Capacity using Topographical Shape of Sand-bar and High Resolution Image in Urban Stream (도시하천의 지형태 자료와 영상정보를 이용한 수체적 시험평가)

  • Lee, Hyun Seok;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.445-450
    • /
    • 2008
  • Recently, environmental and ecological approaches is in progress in urban stream, especially the guarantee of instream flow becomes very important. In this paper, it is suggested that water volume estimation method utilizing the topographical shape data obtained by field investigation and satellite image to manage the urban stream efficiently. The data obtained at Gap River is the study area are analysed and those results are as belows. First, surveying to investigate topographic shape characteristics of urban stream is carried out. In details, the gradient characteristics from water surface to bottom in case of sand area and in case of grass area are 0.013 and 0.065 respectively. In conclusion, the gradient characteristic of grass area is five times bigger than that of sand area. Besides, IKONOS image is classified by spectrum analysis and Minimum Distance Method and the sand area extraction method by the generalization method as Median filter is suggested to calculate water volume. Finally, mapping process on the sand area extracted from the topographical shape field data in river and satellite images is carried out by the GIS spatial analysis. And on the assumption that the water level was 1m at that time when satellite image was taken, the water volume was $225,258m^3$. It is clarified that the effect of water volume improvement was about 10.5% in comparison with water volume that had no consideration on the gradient characteristics of sand-bar.

Unmanned AerialVehicles Images Based Tidal Flat Surface Sedimentary Facies Mapping Using Regression Kriging (회귀 크리깅을 이용한 무인기 영상 기반의 갯벌 표층 퇴적상 분포도 작성)

  • Geun-Ho Kwak;Keunyong Kim;Jingyo Lee;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.537-549
    • /
    • 2023
  • The distribution characteristics of tidal flat sediment components are used as an essential data for coastal environment analysis and environmental impact assessment. Therefore, a reliable classification map of surface sedimentary facies is essential. This study evaluated the applicability of regression kriging to generate a classification map of the sedimentary facies of tidal flats. For this aim, various factors such as the number of field survey data and remote sensing-based auxiliary data, the effect of regression models on regression kriging, and the comparison with other prediction methods (univariate kriging and regression analysis) on surface sedimentary facies classification were investigated. To evaluate the applicability of regression kriging, a case study using unmanned aerial vehicle (UAV) data was conducted on the Hwang-do tidal flat located at Anmyeon-do, Taean-gun, Korea. As a result of the case study, it was most important to secure an appropriate amount of field survey data and to use topographic elevation and channel density as auxiliary data to produce a reliable tidal flat surface sediment facies classification map. In addition, regression kriging, which can consider detailed characteristics of the sediment distributions using ultra-high resolution UAV data, had the best prediction performance compared to other prediction methods. It is expected that this result can be used as a guideline to produce the tidal flat surface sedimentary facies classification map.