2008년 12월에 우리나라 최초의 통신해양기상위성(Communications, Oceanography and Meteorology Satellite, COMS)이 발사될 예정이다. 통신해양기상위성의 영상데이터의 기하보정을 위하여 다음과 같은 연구를 수행하였다. 기상위성은 정지궤도상에 위치하여 전지구적인 영상을 얻는다. 영상의 전지구적인 해안선은 구름 등으로 가려져서 명확한 정보를 제공할 수 없게 된다. 구름 등으로 방해되지 않는 명확한 해안선 정보를 얻기 위하여 구름 추출을 한다. 실시간으로 기상정보를 얻는 기상위성의 특성상 정합에 전체 영상을 사용하면 수행시간이 다소 소요된다. 정합시 전체 영상에서 정합을 위한 후보점 추출을 위하여 GSHHS(Global Self-consistent Hierarchical High-resolution Shoreline)의 해안선 데이터베이스를 사용하여 211 개 의 랜드마크 칩들을 구축하였다. 이때 구축된 랜드마크 칩은 실험에 사용한 GOES-9의 위치 동경 155도를 반영하여 구축하였다. 전체 영상에서 구축된 랜드마크 칩들의 위치를 중심으로 구름추출을 수행한다. 전체 211 개의 후보점 중 구름이 제거된 나머지 후보점에 대하여 정합을 수행한다. 랜드마크 칩과 위성영상 간의 정합 중 참정합과 오정합이 존재하는데 자동으로 오정합을 검출하기 위하여 강인추정기법 (RANSAC, Random Sample Consensus)을 사용한다. 이때 자동으로 판별되어 오정합이 제거된 정합결과로 최종적인 기하보정을 수행한다. 기하보정을 위한 센서모델은 GOES-9 위성의 센서특정을 고려하여 개발되었다. 정합 및 RANSAC결과로 얻어진 기준점으로 정밀 센서모델을 수립하여 기하보정을 실시하였다. 이때 일련의 수행과정을 통신해양기상위성의 실시간 처리요구사항에 맞도록 속도를 최적화하여 진행되도록 개발하였다.
The stereo geometry establishment based on the precise sensor modeling is prerequisite for accurate stereo data processing. Ground control points are generally required for the accurate sensor modeling though it is not possible over the area where the accessibility is limited or reference data is not available. For the areas, the relative orientation should be carried out to improve the geometric consistency between the stereo data though it does not improve the absolute positional accuracy. The relative orientation requires conjugate points that are well distributed over the entire image region. Therefore the automatic conjugate point extraction is required because the manual operation is labor-intensive. In this study, we applied the method consisting of the key point extraction, the search space minimization based on the epipolar line, and the rigorous outlier detection based on the RPCs (Rational Polynomial Coefficients) bias compensation modeling. We tested different parameters of window sizes for Kompsat-2 across track stereo data and analyzed the RPCs precision after the bias compensation for the cases whether the epipolar line information is used or not. The experimental results showed that matching outliers were inevitable for the different matching parameterization but they were successfully detected and removed with the rigorous method for sub-pixel level of stereo RPCs precision.
본 연구에서는 UAV (Unmanned Aerial Vehicle)와 PlanetScope 위성영상을 함께 이용한 붕괴건물 탐지를 수행하여 지표면에 위치한 특정 객체 탐지에 있어 이종 센서의 활용 가능성을 제시하였다. 이를 위해 지난해 4월 산불 피해로 붕괴된 20여 채의 건물들이 있는 곳을 실험장소로 선정하였다. 붕괴건물 탐지를 위해 1차적으로 객체기반 분할을 수행한 고해상도의 UAV 영상을 이용해 ExG (Excess Green), GLCM (Gray-Level Co-occurrence Matrix) 그리고 DSM (Digital Surface Model)과 같은 객체들의 특징(feature) 정보를 생성한 후 이를 붕괴건물 후보군 탐지에 이용하였다. 이 과정에서 탐지정확도 향상을 위해 PlanetScope를 이용한 변화탐지 결과를 함께 사용하였으며 이를 시드 화소(seed pixles)로 사용하여 붕괴건물 후보군에서 오탐지된 영역과 과탐지된 영역을 수정 및 보완하였다. 최종적인 탐지 결과는 참조 영상을 통해 그 성능을 분석하였으며 UAV 영상만을 이용한 붕괴건물 후보군 탐지 결과와 UAV 그리고 PlanetScope 영상을 함께 사용했을 때의 결과의 정확도를 비교, 분석하였다. 그 결과 UAV 영상만을 이용해 탐지한 붕괴건물의 정확도는 0.4867 F1-score를 가지며 UAV와 PlanetScope 영상을 함께 사용했을 때의 결과는 0.8064 F1-score로 그 값이 상승하였다. Kappa 지수 또한 0.3674에서 0.8225로 향상된 것을 확인할 수 있었다.
본 연구는 분류(classification)기반 딥러닝 모델(deep learning model)인 Inception과 SENet을 결합한 SE-Inception을 활용하여 수종분류를 수행하고 분류정확도를 평가하였다. 데이터세트의 입력 이미지는 Worldview-3와 GeoEye-1 영상을 활용하였으며, 입력 이미지의 크기는 10 × 10 m, 30 × 30 m, 50 × 50 m로 분할하여 수종 분류정확도를 비교·평가하였다. 라벨(label)자료는 분할된 영상을 시각적으로 해석하여 5개의 수종(소나무, 잣나무, 낙엽송, 전나무, 참나무류)으로 구분한 후, 수동으로 라벨링 작업을 수행하였다. 데이터세트는 총 2,429개의 이미지를 구축하였으며, 그중약 85%는 학습자료로, 약 15%는 검증자료로 활용하였다. 딥러닝 모델을 활용한 수종분류 결과, Worldview-3 영상을 활용하였을 때 최대 약 78%의 전체 정확도를 달성하였으며, GeoEye-1영상을 활용할 때 최대 약 84%의 정확도를 보여 수종분류에 우수한 성능을 보였다. 특히, 참나무류는 입력 이미지크기에 관계없이 F1은 약 85% 이상의 높은 정확도를 보였으나, 소나무, 잣나무와 같이 분광특성이 유사한 수종은 오분류가 다수 발생하였다. 특정 수종에서 위성영상의 분광정보 만으로는 특징량 추출에 한계가 있을 수 있으며, 식생지수, Gray-Level Co-occurrence Matrix (GLCM) 등 다양한 패턴정보가 포함된 이미지를 활용한다면 분류 정확도를 개선할 수 있을 것으로 판단된다.
공간해상도 약 1 m의 고해상도 X-band SAR 위성이 이용되면서 SAR를 이용한 도심지 모니터링, 표적탐지, 건물 재구성에 관한 연구가 진행되고 있다. 본 연구에서는 고해상도 TerraSAR-X SAR 영상을 이용한 도심지 건물 재구성을 수행하였다. 도심지 건물 재구성을 위하여 1:25,000 수치지형도로부터 건물의 외곽선을 추출하였으며, 추출한 건물의 외곽선을 기반으로 SAR 영상에서 모서리반사 위치를 찾았다. KS 테스트(Kolmogorov-Smirnov Test)에 기반하여 고해상도 SAR 진폭영상의 건물 모서리반사 위치로부터 레이오버 길이를 측정하여 건물의 초기 높이를 설정하였다. 진폭영상을 이용하여 추출한 건물의 초기 높이 기준 -10 m에서 +10 m로 건물의 높이를 변화시키며 도심지에 적합한 간섭위상 시뮬레이션을 수행하여 TerraSAR-X 간섭위상과의 위상 일치성 계산을 하였다. 위상 일치의 경향성 분석을 통해 건물의 높이를 설정해 줌으로써 고해상도 SAR 영상을 이용한 도심지 건물 재구성 연구를 진행하였다. 대전지역의 아파트 단지에 적용한 결과, 진폭영상과 간섭위상을 이용하여 추정된 건물 높이는 LiDAR로부터 추출된 높이를 기준으로 약 1~2 m 정도의 RMSE (Root Mean Square Error)를 보였다. 개발된 알고리즘은 향후 TerraSAR-X와 TanDEM-X 간섭쌍 자료에 적용할 경우, 보다 도심지 모니터링에 효과적으로 이용될 수 있을 것이다.
고해상도 위성영상 활용의 증가와 함께 자동 정밀 기하보정의 필요성이 증가하고 있다. 정밀기하보정을 위한 지상기준점(ground control point, GCP)을 수집하는 방법 중 하나로 항공정사영상과 같은 영상지도의 일부를 추출한 칩(chip) 영상을 이용하는 것을 들 수 있고, 영상 정합 기법을 이용하여 자동화할 수 있다. 이 때 통합기준점과 같이 기존에 측량이 이루어진 지상기준점을 대상으로 칩 영상을 제작하는 경우 개수의 제한으로 영상 정합 성공률의 중요성이 증가한다. 이 연구의 목적은 KOMPSAT-3A 영상과 항공정사영상 기반 지상 기준점 칩 영상 간 정합 성공률을 향상시키기 위한 방법을 제시하는 것이다. 이를 위하여 KOMPSAT-3A 전정색(panchromatic, PAN) 영상, 다중분광(multispectral, MS) 영상, 융합(pansharpening, PS) 영상과 항공정사영상의 각 밴드 조합에 대해 영상 정합을 실시하고 성공률을 비교하였다. 그 결과 주로 사용되고 있는 전정색 영상과 다중분광 영상을 이용할 때 약 10-30%의 영상 정합 성공률이 융합 영상을 이용할 때 약 40-50%로 증가하는 것으로 나타났다. 따라서 KOMPSAT-3A 위성영상과 항공정사영상의 정합에 있어 융합 영상을 사용하는 것이 정합 성공률을 향상시키는데 도움이 되는 것으로 판단된다.
본 연구는 초고해상도 무인항공기 자료를 활용하여 황도 갯벌의 미세 퇴적 구조를 분석하는 것을 목적으로 하였다. 갯벌은 육지와 바다 사이의 전이 지역으로서 조석 활동에 의해 끊임없이 변화하며, 퇴적 과정과 환경 조건을 이해하는 데 중요한 독특한 환경을 제공한다. 기존의 현장 관측 방법은 공간적 및 시간적 범위에 한계가 있고, 기존 위성 영상은 미세한 퇴적 구조를 연구하기에 충분한 해상도를 제공하지 못한다. 이러한 한계를 극복하기 위해, 본 연구에서는 충청남도 황도 갯벌의 고해상도 이미지를 무인항공기를 이용해 촬영하였다. 황도 갯벌은 방조제 건설과 같은 해안 개발 프로젝트로 인해 퇴적 환경이 크게 변화한 지역이다. 2022년 5월 17일부터 18일까지 현장 관측을 통해 91개의 지점에서 퇴적물 샘플을 수집하였으며, 그중 25개의 주요 지점을 집중적으로 분석하였다. 약 0.9 mm의 공간 해상도를 가진 무인항공기 자료를 이용하여 미세 퇴적 구조의 파라미터(Parameter)를 식별하고 추출하였다. 건열에서는 다각형 장축의 길이를 추출하였고, 연흔에서는 파장과 연흔을 정량적으로 표현하는 대표적인 지표인 연흔 대칭 지수(Ripple Symmetry Index)를 추출하였다. 연구 결과, 니질 함량이 80% 이상인 지역에서는 평균 37.3 cm 간격의 건열이 형성되었으며, 사질 함량이 60% 이상인 지역에서는 평균 파장이 8 cm, 연흔 대칭 지수가 2.0인 연흔이 형성되었다. 본 연구는 초고해상도 무인항공기 자료를 활용하여 인간의 도보에 의한 현장 관측 없이도 갯벌의 미세 퇴적 구조를 효과적으로 분석할 수 있음을 입증하였다. 이는 환경 모니터링 및 해안 관리에서 중요한 도구로써 무인항공기 기술의 가능성을 강조하며, 무인항공기 자료가 퇴적 구조 연구에 유용하다는 것을 보여준다. 또한, 본 연구의 결과는 보다 정밀한 퇴적상 분류를 위한 기반 자료로 활용될 수 있을 것으로 기대된다.
수자원 관리와 수재해 피해 분석 및 예측 등을 위해 원격탐사를 활용한 수체면적을 추정하는 것은 매우 필수적이다. 위성을 활용한 수체탐지는 주로 광학 및 영상레이더(Synthetic Aperture Radar, SAR) 센서를 탑재한 대형(무게 1,000kg 이상) 위성을 중심으로 수행되어왔다. 그러나 긴 재방문주기(repeat cycle)로 인해 재난/재해 시 적시 활용이 불가능한 한계가 존재한다. 최근 초소형위성(무게 100kg 미만) 개발이 활발히 이루어짐에 따라 기존 대형위성 중심의 시간해상도 한계를 극복할 수 있는 계기가 되었다. 현재 활발히 운용중인 초소형 SAR 위성은 핀란드의 ICEYE와 미국의 Capella 위성으로, 지구관측을 목적으로 군집(constellation) 형태로 운용되고 있다. 군집화 운용으로 인해 짧은 재방문주기(현재 0.8회/1일) 및 고해상도(Spot(0.5m))를 가지며, SAR센서 탑재로 기상 및 주야 무관하게 관측이 가능한 장점이 있다. 본 연구에서는 초소형위성의 운영 현황 및 특징에 대해서 기술하였으며, 초소형 SAR 위성 영상에 최적화된 수체면적 추정기술을 한반도 대청댐 유역에 적용해 보았다. 또한 광학 위성인 Sentinel-2 위성으로부터 생성된 수체를 참조값(reference)으로 하여 초소형위성 2기와 대형위성인 Sentinel-1위성과의 면적, 상관성 분석을 수행하였다. Capella 위성의 경우 가장 적은 면적의 차를 보였으며, 세 영상 모두 높은 상관관계를 나타냄을 확인하였다. 본 연구의 결과를 통해 초소형 SAR 위성의 낮은 NESZ(Noise Equivalent Sigma Zero)에도 불구하고 수체면적 추정이 가능함을 확인하였으며, 기존 대형 SAR 위성을 활용한 수자원/수재해 감시 활용의 한계를 극복할 수 있을 것으로 사료된다.
Currently high resolution satellite imagery has been used in lots of fields of terrain analysis, ocean development, change detection, cartography, classification, environmental monitoring, earth resource observation, meteorological observation as well as military The accuracy of the 3-D modeling of SPOT-5 stereopair images using these ground control points is about 5m in planimetric distance error and about 2m in height error. This study demonstrates the available ground control points for North Korea, of which accuracy is as good as to generate the digital map at the scale of 1:25,000.
The world which based on knowledge and information is changing significantly. In the various knowledge and information, the importance of GSIS has increased for efficient application and management of country. The Geomatics has made a change rapidly, observation methods have improved too. The existing acquisition of Geoinformation depend on aerial photogtaphs, but new technology Jike application of high resolution satellite images. SAR and LiDAR, is the fastest. especially, LiDAR surveying is most advanced active observation technology and Geoinfomtation is acquired by reflection of its laser pulse. In this study. the position accuracy of extracted building from LiDAR was evaluated by GPS surveying, then each data was made comparison between LiDAR's and GPS's data. After processing. the result of this study will be suggested basic data about application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.