• Title/Summary/Keyword: high-resolution satellite imagery

Search Result 335, Processing Time 0.026 seconds

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.

An Implementation of Change Detection System for High-resolution Satellite Imagery using a Floating Window

  • Lim, Young-Jae;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.275-279
    • /
    • 2002
  • Change Detection is a useful technology that can be applied to various fields, taking temporal change information with the comparison and analysis among multi-temporal satellite images. Especially, Change Detection that utilizes high-resolution satellite imagery can be implemented to extract useful change information for many purposes, such as the environmental inspection, the circumstantial analysis of disaster damage, the inspection of illegal building, and the military use, which cannot be achieved by low- or middle-resolution satellite imagery. However, because of the special characteristics that result from high-resolution satellite imagery, it cannot use a pixel-based method that is used for low-resolution satellite imagery. Therefore, it must be used a feature-based algorithm based on the geographical and morphological feature. This paper presents the system that builds the change map by digitizing the boundary of the changed object. In this system, we can make the change map using manual or semi-automatic digitizing through the user interface implemented with a floating window that enables to detect the sign of the change, such as the construction or dismantlement, more efficiently.

  • PDF

VARIOGRAM-BASED URBAN CHARACTERIZATION USING HIGH RESOLUTION SATELLITE IMAGERY

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.413-416
    • /
    • 2006
  • As even small features can be classified as high resolution imagery, urban remote sensing is regarded as one of the important application fields in time of wide use of the commercialized high resolution satellite imageries. In this study, we have analyzed the variogram properties of high resolution imagery, which was obtained in urban area through the simple modeling and applied to the real image. Based on the grasped variogram characteristics, we have tried to decomposed two high-resolution imagery such as IKONOS and QuickBird reducing window size until the unique variogram that urban feature has come out and then been indexed. Modeling results will be used as the fundamental data for variographic analysis in urban area using high resolution imagery later on. Index map also can be used for determining urban complexity or land-use classification, because the index is influenced by the feature size.

  • PDF

3D BUILDING INFORMATION EXTRACTION FROM A SINGLE QUICKBIRD IMAGE

  • Kim, Hye-Jin;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.409-412
    • /
    • 2006
  • Today's commercial high resolution satellite imagery such as IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Recognizing this potential use of high resolution satellite imagery, KARI is performing a project for developing Korea multipurpose satellite 3(KOMPSAT-3). Therefore, it is necessary to develop techniques for various GIS applications of KOMPSAT-3, using similar high resolution satellite imagery. As fundamental studies for this purpose, we focused on the extraction of 3D spatial information and the update of existing GIS data from QuickBird imagery. This paper examines the scheme for rectification of high resolution image, and suggests the convenient semi-automatic algorithm for extraction of 3D building information from a single image. The algorithm is based on triangular vector structure that consists of a building bottom point, its corresponding roof point and a shadow end point. The proposed method could increase the number of measurable building, and enhance the digitizing accuracy and the computation efficiency.

  • PDF

Automatic Road Extraction by Gradient Direction Profile Algorithm (GDPA) using High-Resolution Satellite Imagery: Experiment Study

  • Lee, Ki-Won;Yu, Young-Chul;Lee, Bong-Gyu
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.393-402
    • /
    • 2003
  • In times of the civil uses of commercialized high-resolution satellite imagery, applications of remote sensing have been widely extended to the new fields or the problem solving beyond traditional application domains. Transportation application of this sensor data, related to the automatic or semiautomatic road extraction, is regarded as one of the important issues in uses of remote sensing imagery. Related to these trends, this study focuses on automatic road extraction using Gradient Direction Profile Algorithm (GDPA) scheme, with IKONOS panchromatic imagery having 1 meter resolution. For this, the GDPA scheme and its main modules were reviewed with processing steps and implemented as a prototype software. Using the extracted bi-level image and ground truth coming from actual GIS layer, overall accuracy evaluation and ranking error-assessment were performed. As the processed results, road information can be automatically extracted; by the way, it is pointed out that some user-defined variables should be carefully determined in using high-resolution satellite imagery in the dense or low contrast areas. While, the GDPA method needs additional processing, because direct results using this method do not produce high overall accuracy or ranking value. The main advantage of the GDPA scheme on road features extraction can be noted as its performance and further applicability. This experiment study can be extended into practical application fields related to remote sensing.

REAL-TIME 3D SIMULATION INFRASTRUCTURE FOR PRACTICAL APPLICATION OF HIGH-RESOLUTION SATELLITE IMAGERY

  • Yoo, Byoung-Hyun;Brotzman, Don;Han, Soon-Hung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.155-158
    • /
    • 2008
  • The needs for digital models of real environment such as 3D terrain or cyber city model are increasing. Most of applications related with modeling and simulation require virtual environment constructed from geospatial information of real world in order to guarantee reliability and accuracy of the simulation. The most fundamental data for building virtual environment, terrain elevation and orthogonal imagery is acquired from optical sensor of satellite or airplane. Providing interoperable and reusable digital model is important to promote practical application of high-resolution satellite imagery. This paper presents the new research regarding representation of geospatial information, especially for 3D shape and appearance of virtual terrain, and describe framework for constructing real-time 3D model of large terrain based on high-resolution satellite imagery. It provides infrastructure of 3D simulation with geographical context. Details of standard-based approach for providing infrastructure of real-time 3D simulation using high-resolution satellite imagery are also presented. This work would facilitate interchange and interoperability across diverse systems and be usable by governments, industry scientists and general public.

  • PDF

A Study of on the Forest Map Update Using Orthorecified High Resolution Satellite Imagery Data (고해상도 정사위성영상을 이용한 임상도 수정에 관한 연구)

  • 성천경;조정호
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.571-577
    • /
    • 2004
  • The operational availability of multispactal high-resolution satellite imagery, opens up new possibilities for updating forest stand map. Compared with information acquired by traditional methods (Panchromatic Aerial Photo), these data offer a number of advantages, In this study used 1m resolution and 4 band multispectral, which are capability to update forest map of kind of tree. Therefore, high-resolution satellite imagery is good method for updating forest map in the future.

  • PDF

Comparative Analysis of LPF and HPF for Roads Edge Detection from High Resolution Satellite Imagery (고해상도위성영상에서 도로 경계 검출을 위한 고주파와 저주파 필터링 비교분석에 관한 연구)

  • Choi, Hyun;Kang, In-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.3-11
    • /
    • 2006
  • The need for edge detection about topography data from the high resolution satellite imagery is happening with increasing frequency according to many people utilize the its imagery as various fields recently. Many experts is recognizing of other GIS will make use of the road detection from the high resolution satellite imagery, including ITS (Intelligent Transportation Systems) and urban planning. This paper is comparative analysis of LPF (Low Pass Filtering) and HPF (High Pass Filtering) for roads edge detection from high resolution satellite imagery. As a result, LPF and HPF can be highlight selective pixels at edge area about input data. In case or applying to other techniques such as LPF for the same purpose, they aye more effective for wide road width which often cause the slight distortion of boundary or overall change of brightness values on the whole Image. Whereas, HPF has ability to enhance selectively detailed components in a target image.

  • PDF

Development of Feature-based Classification Software for High Resolution Satellite Imager

  • Jeong, Soo;Kim, Kyung-Ok;Jeong, Sang-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1111-1113
    • /
    • 2003
  • In this paper, we investigated a method for feature - based classification to develop software which is suitable to the classification of high resolution satellite imagery . So, we developed related algorithm and designed user interfaces of convenience, considering various elements require for the feature - based classification. The software was tested with eCognition software which is unique commercial software for feature - based classification.

  • PDF

A building roof detection method using snake model in high resolution satellite imagery

  • Ye Chul-Soo;Lee Sun-Gu;Kim Yongseung;Paik Hongyul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.241-244
    • /
    • 2005
  • Many building detection methods mainly rely on line segments extracted from aerial or satellite imagery. Building detection methods based on line segments, however, are difficult to succeed in high resolution satellite imagery such as IKONOS imagery, for most buildings in IKONOS imagery have small size of roofs with low contrast between roof and background. In this paper, we propose an efficient method to extract line segments and group them at the same time. First, edge preserving filtering is applied to the imagery to remove the noise. Second, we segment the imagery by watershed method, which collects the pixels with similar intensities to obtain homogeneous region. The boundaries of homogeneous region are not completely coincident with roof boundaries due to low contrast in the vicinity of the roof boundaries. Finally, to resolve this problem, we set up snake model with segmented region boundaries as initial snake's positions. We used a greedy algorithm to fit a snake to roof boundary. Experimental results show our method can obtain more .correct roof boundary with small size and low contrast from IKONOS imagery. Snake algorithm, building roof detection, watershed segmentation, edge-preserving filtering

  • PDF