The aluminum alloy which is light and has excellent thermal conductivity and iron base alloy that is remarkable heat-resistece and wear resistence properties were bonded together. The bond was created between a stationary and a rotating member by using the frictional heat generated between them while subjected to high normal forces on the interface of Al alloy and iron base alloy. The microstructure of the bonded interface of friction welding and the strength in the bonded interface formed under various bonding conditions were examined through TEM, SEM with EDX and triple bending test. In interface of bonding materials formed after various heat treatment, bonding strength was substantially different, resulting from formation of intermetallic compound or softening during annealing.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.11
/
pp.4426-4442
/
2020
Since scene segmentation is becoming a hot topic in the field of autonomous driving and medical image analysis, researchers are actively trying new methods to improve segmentation accuracy. At present, the main issues in image semantic segmentation are intra-class inconsistency and inter-class indistinction. From our analysis, the lack of global information as well as macroscopic discrimination on the object are the two main reasons. In this paper, we propose a Densely connected residual Attention network (DA-Res2Net) which consists of a dense residual network and channel attention guidance module to deal with these problems and improve the accuracy of image segmentation. Specifically, in order to make the extracted features equipped with stronger multi-scale characteristics, a densely connected residual network is proposed as a feature extractor. Furthermore, to improve the representativeness of each channel feature, we design a Channel-Attention-Guide module to make the model focusing on the high-level semantic features and low-level location features simultaneously. Experimental results show that the method achieves significant performance on various datasets. Compared to other state-of-the-art methods, the proposed method reaches the mean IOU accuracy of 83.2% on PASCAL VOC 2012 and 79.7% on Cityscapes dataset, respectively.
In this study, character recognition using deep learning is performed among the various defects in the PCB, the purpose of which is to check whether the printed characters are printed correctly on top of components, or the incorrect parts are attached. Generally, character recognition may be perceived as not a difficult problem when considering MNIST, but the printed letters on the PCB component data are difficult to collect, and have very high redundancy. So if a deep learning model is trained with original data without any preprocessing, it can lead to over fitting problems. Therefore, this study aims to reduce the redundancy to the smallest dataset that can represent large amounts of data collected in limited production sites, and to create datasets through data enhancement to train a flexible deep learning model can be used in various production sites. Moreover, ResNet model verifies to determine which combination of datasets is the most effective. This study discusses how to reduce and augment data that is constantly occurring in real PCB production lines, and discusses how to select coresets to learn and apply deep learning models in real sites.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.1
/
pp.30-40
/
2022
Electrocardiogram (ECG) signal's shape and characteristic varies through each individual, so it is difficult to classify with one neural network. It is difficult to classify the given data directly, but if corresponding normal beat is given, it is relatively easy and accurate to classify the beat by comparing two beats. In this study, we classify the ECG signal by generating the reference normal beat through the template cluster, and combining with the input ECG signal. It is possible to detect abnormal beats of various individual's records with one neural network by learning and classifying with the imaged ECG beats which are combined with corresponding reference normal beat. Especially, various neural networks, such as GoogLeNet, ResNet, and DarkNet, showed excellent performance when using the comparative learning. Also, we can confirmed that GoogLeNet has 99.72% sensitivity, which is the highest performance of the three neural networks.
This study was conducted to develope the observing methods for density of stink bugs in soybean reproductive stage. The adults and nymphs of bean bug, Riptortus clavatus, red-banded shield bug, Piezodous hybneri, green stink bug, Nezara antennata, Sole bug, Dolycoris baccarum, and brown marmorated stink bug, Halyomorpha halys were observed by three observing methods such as beating, sweeping net, and visual counting methods in the full bloom (R2), full pod (R4) and beginning maturity (R7) of soybean. As a result, total number of stink bugs observed was the highest with 5,214.2 by beating method, and then was 2,581.8 by visual counting method, and was the lowest with 103.1 by sweeping net method. Total number of stink bugs observed by the beating and visual counting methods was P. hybneri, followed by N. antennata, H. halys, R. clavatus and D. baccarum with clear difference in observed number of each stink bugs while total number of stink bugs observed by sweeping net method was very low in the range of 18 to 23. Accordingly, the observed density of stink bugs exception of R. clavatus adult by beating method was generally high. However, the number of R. clavatus adult was more observed by flushing method than that by beating method from the beginning bloom (R1) to full maturity (R8), and was more observed at morning time than that at afternoon time. Therefore, two observation methods that flushing method for R. clavatus and beating method for the other stink bugs were recommended for the occurring density of stink bugs in soybean because both bean bug and pentatomidae stink bugs have distinct behavior characteristics such as flying and dropping.
Kim, Hyun-Ju;Bae, Soon-Do;Lee, Geon-Hwi;Park, Sung-Tae;Park, Chung-Gyoo
Korean journal of applied entomology
/
v.46
no.1
s.145
/
pp.159-164
/
2007
Pea weevil was easily observed in the flower and pod of garden pea, but not observed in soybean at various locations in Yeongnam district through 2001 to 2003. Number of pea weevil observed in pea flower was the highest at Milyang (20), followed by Yangsan (15), Sacheon (14) and Changnyong (13), and was the lowest at Pohang (3). On the other hand, number of pea weevil observed in pea pod was the highest at Tongyeong (192), followed by Changnyong (171), Sacheon (157) and Changwon (138), and was the lowest at Pohang (12) which showed simila. tendency with the result of pea flower. Number of pea weevil occurrence observed in pea pod after one and two times applications of Insecticides in pea field were different at harvest day of 30th May while were not significantly different at harvest day of 5th June. Likewise, number of pea pod damage after one and two times applications of insecticides were different at harvest day of 10th May while was not different at harvest day of 5th June. Thus, control efficacies of insecticides according to application times against pea weevil showed very high with above 95% at harvest day of 6th June while showed variable control efficacies at harvest of 30th May.
The Plasma film treated with a high electric voltage was developed to enhance flow down of condensation drops on inside plastic film. Arch type greenhouse framed with iron pipe of 25mm diameter defand 1.5mm thickness were covered with either the developed plasma film or surfactant film(control). Green pepper seedlings raised for 40 days in plug trays were transplanted at a density of 110cm by 30cm in each greenhouse. The mount of condensational water on film surface, generated by 7$0^{\circ}C$ water bath chimney systems and flew down, was collected and measured. The amount of collected water after 150 minutes was 2.56 mL.100c $m^{-2}$ and 0.94mL.100c $m^{-2}$ , respectively, in the plasma film and surfactant film-covered greenhouses. The amount of condensational water drops attached on the cover at 08:20 a.m. at 60 days filter covering was 0.34mL.100c $m^{02}$ and 0.32mL.100c $m^{-2}$ , respectively, in the plasma film- and surfactant film-covered greenhouses. Solar irradiance transmitted into greenhouse was 2.0% higher in the greenhouse covered with the plasma film tan that in the greenhouse covered with the surfactant film. Air temperature in the plasma film-covered greenhouse was higher than the surfactant film-covered greenhouse by 0.5$^{\circ}C$. However, there was no difference in relative humidity between the two greenhouse. Plant height, leaf area, dry weight and early yield showed no significant differences.s.
We estimated the biomass productivity and the storage potential of nitrogen, the major contributor of non-point source pollution, with four three-year-old four poplar clones in a riparian woody buffer established in the Anseong River in Anseong, Korea. Stem of Populus alba ${\times}$ P. glandulosa clone 72-31 and Populus deltoides ${\times}$ P. nigra clone Dorskamp showed the highest percentage of aboveground biomass components, followed by branch and leaf. Nitrogen content in aboveground biomass components of two poplar clones was the highest in leaf and the lowest in stem. Nitrogen content in leaf and branch of clone 72-31 was higher than that of clone Dorskamp, while it in stem was lower. Populus deltoides clone Ay48 showed the highest above-ground biomass productivity, which was estimated as $37.5ton\;ha^{-1}$ at age 3. However, clone 72-31 was the lowest in above-ground biomass productivity. Nitrogen storage potential in aboveground biomass of 3-year-old poplar clones was high in order of aboveground biomass. Clone Ay48 showed the highest nitrogen storage potential in aboveground biomass, which was estimated as $218.3kg\;ha^{-1}$ at age 3.
Jae Hyon Park;Insun Park;Kichang Han;Jongjin Yoon;Yongsik Sim;Soo Jin Kim;Jong Yun Won;Shina Lee;Joon Ho Kwon;Sungmo Moon;Gyoung Min Kim;Man-deuk Kim
Korean Journal of Radiology
/
v.23
no.10
/
pp.949-958
/
2022
Objective: To investigate the feasibility of using a deep learning-based analysis of auscultation data to predict significant stenosis of arteriovenous fistulas (AVF) in patients undergoing hemodialysis requiring percutaneous transluminal angioplasty (PTA). Materials and Methods: Forty patients (24 male and 16 female; median age, 62.5 years) with dysfunctional native AVF were prospectively recruited. Digital sounds from the AVF shunt were recorded using a wireless electronic stethoscope before (pre-PTA) and after PTA (post-PTA), and the audio files were subsequently converted to mel spectrograms, which were used to construct various deep convolutional neural network (DCNN) models (DenseNet201, EfficientNetB5, and ResNet50). The performance of these models for diagnosing ≥ 50% AVF stenosis was assessed and compared. The ground truth for the presence of ≥ 50% AVF stenosis was obtained using digital subtraction angiography. Gradient-weighted class activation mapping (Grad-CAM) was used to produce visual explanations for DCNN model decisions. Results: Eighty audio files were obtained from the 40 recruited patients and pooled for the study. Mel spectrograms of "pre-PTA" shunt sounds showed patterns corresponding to abnormal high-pitched bruits with systolic accentuation observed in patients with stenotic AVF. The ResNet50 and EfficientNetB5 models yielded an area under the receiver operating characteristic curve of 0.99 and 0.98, respectively, at optimized epochs for predicting ≥ 50% AVF stenosis. However, Grad-CAM heatmaps revealed that only ResNet50 highlighted areas relevant to AVF stenosis in the mel spectrogram. Conclusion: Mel spectrogram-based DCNN models, particularly ResNet50, successfully predicted the presence of significant AVF stenosis requiring PTA in this feasibility study and may potentially be used in AVF surveillance.
Rapid flame spectrophotometric method is developed to determine a small amount of sodium in zircon frit and high purity zirconium compounds. The instrumental characteristics and the optimum conditions are studied and a comparison between calibration curve method and standard addition method is made.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.