• 제목/요약/키워드: high-pressure effects

검색결과 2,132건 처리시간 0.032초

High Pressure Inactivation Kinetics of Salmonella enterica and Listeria monocytogenes in Milk, Orange Juice, and Tomato Juice

  • Xu, Hua;Lee, Hyeon-Yong;Ahn, Ju-Hee
    • Food Science and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.861-866
    • /
    • 2009
  • Effects of pressure come-up and holding times on the inactivation of Salmonella enterica and Listeria monocytogenes were evaluated in deionized water, milk, orange juice, and tomato juice with pH 6.76, 6.85, 3.46, and 4.11, respectively. The inoculated samples were subjected to high pressure treatments at 300, 400, and 500 MPa for less than 10 min at $30^{\circ}C$. At 500 MPa, the numbers of S. enterica and L. monocytogenes in deionized water, orange juice, and tomato juice were reduced by more than 6 log CFU/mL during the come-up time. Compared to orange and tomato juices, milk showed a considerable baroprotective effect against S. enterica and L. monocytogenes. At 300 MPa, the D values for S. enterica in milk, orange juice, and tomato juice were 0.94, 0.41, and 0.45 min, while those for L. monocytogenes were 9.56, 1.11, and 0.94 min, respectively. Low pH resulted in a noticeable synergistic effect on the inactivation of S. enterica and L. monocytogenes in orange and tomato juices. Therefore, these results might provide more useful information for designing the entire high hydrostatic pressure (HHP) conditions, taking the come-up time reduction, and food system.

고압/저압 EGR 공급 비율에 따른 디젤 엔진의 연소 및 배기 특성 (Combustion and Emissions Characteristics of a Diesel Engine with the Variation of the HP/LP EGR Proportion)

  • 박영수;배충식
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.90-97
    • /
    • 2014
  • The effects of high pressure and low pressure exhaust gas recirculation (HP/LP EGR) portion on diesel engine combustion and emissions characteristics were investigated in a 2.2 L passenger-car diesel engine. The po3rtion of HP/LP EGR was varied from 0 to 1 while fixing the mass flow rate of fresh air. The intake manifold temperature was lowered with the increasing of the portion of LP EGR, which led to the retardation of heat release by pilot injection. The lowered intake manifold temperature also resulted in low nitrogen oxide (NOx) emissions due to decreased in-cylinder temperature and prolonged ignition delay, however, the carbon monoxide (CO) emission showed opposite trend to NOx emissions. The brake specific fuel consumption (BSFC) was decreased as the portion of LP EGR increased due to lowered exhaust manifold pressure by wider open of turbocharger vane. Consequently, the trade-off relationship between NOx and BSFC could be improved by increasing the LP EGR portion.

초임계 압력상태에서 기체수소/액체산소 국소화염구조 해석 (Analysis for Local Structure of Gaseous Hydrogen/liquid Oxygen Flame at Supercritical Pressures)

  • 김태훈;김성구;김용모
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.182-188
    • /
    • 2010
  • Significant real fluid behaviors including rapid property changes take place where high pressure combustion devices such as rocket engines. The flamelet model is the reliable approach to account for the real fluid effects. In the present study, the flamelet equations are extended to treat the general fluids over transcritical and supercritical states. The real fluid flamelet model is carried out for the gaseous hydrogen and cryogenic liquid oxygen flames at the wide range of thermodynamic conditions. Based on numerical results, the precise discussions are made for effects of real fluid, pressure, and differential diffusion on the local flame structure.

The association of blood pressure with body mass index and waist circumference in normal weight and overweight adolescents

  • Song, Young-Hwan
    • Clinical and Experimental Pediatrics
    • /
    • 제57권2호
    • /
    • pp.79-84
    • /
    • 2014
  • Purpose: Overweight can be defined by the body mass index (BMI) and is likely associated with an increased cardiovascular disease risk. However, waist circumference (WC), a central adiposity index, may be a better indicator of cardiovascular disease risk. Studies comparing the effects of BMI and WC on cardiovascular risk factors, such as high blood pressure (BP), are rare in adolescents. Methods: We analyzed the correlations of BMI and WC with BP in 3,363 Korean adolescents (aged 10-19 years), using data from the Korean National Health and Nutrition Examination Surveys (2009-2011). Results: Systolic BP (SBP) in both sexes and diastolic BP (DBP) in boys were higher in the high BMI (>85th percentile) and high WC (>90th percentile) groups. High BMI and high WC were positively correlated with high SBP (>90th percentile) in both sexes, and high DBP (>90th percentile), in boys. BMI maintained its positive associations with SBP, DBP, high SBP, and high DBP in the normal weight ($BMI{\leq}85th$ percentile) and overweight (BMI>85th percentile) groups in both boys and girls, as well as in all subjects of both sexes, even after adjustment for WC. However, WC did not correlate with SBP, DBP, high SBP, or high DBP after adjustment for BMI in any group in either sex. Conclusion: In Korean adolescents, BMI correlated better with BP and high BP levels than WC. Further, BMI was positively associated with BP and high BP in the normal weight group as well as in the overweight group.

임계노즐에서 발생하는 비정상유동에 관한 연구 (Study of the Unsteady Gas Flow in a Critical Nozzle)

  • 김재형;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF

고성능 PRO 모듈 개발 및 운전조건이 모듈 성능에 미치는 영향 (The development of high-performance PRO module and effects of operating condition on the performance of PRO module)

  • 한만재;심연주;이종화
    • 상하수도학회지
    • /
    • 제31권4호
    • /
    • pp.303-310
    • /
    • 2017
  • Pressure retarded osmosis(PRO) has attracted much attention as potential technology to reduce the overall energy consumption for reverse osmosis(RO) desalination. The RO/PRO hybrid process is considered as the most logical next step for future desalination. The PRO process aims to harness the osmotic energy difference of two aqueous solutions separated by a semipermeable membrane. By using the concentrated water(RO brine) discharged from existing RO plants, the PRO process can effectively exploit a greater salinity gradient to reduce the energy cost of processing concentrated water. However, in order to use RO brine as the draw solution, PRO membrane must have high water flux and enough mechanical strength to withstand the high operational pressure. This study investigates the development of a thin film composite PRO membrane and spiral wound module for high power density. Also, the influence of membrane backing layer on the overall power density was studied using the characteristic factors of PRO membranes. Finally, the performance test of an 8-inch spiral wound module was carried out under various operating conditions(i.e. hydraulic pressure, flow rate, temperature). As the flow rate and temperature increased under the same hydraulic pressure, the PRO performance increased due to the growth of water permeability coefficient and osmotic pressure. For a high performance PRO system, in order to optimize the operating conditions, it is highly recommended that the flow pressure be minimized while the flow rate is maintained at a high level.

비드 형상에 따른 실린더 헤드 가스켓의 비선형 거동 특성 (Effects of the Bead Shape on the Nonlinear Behavior of Cylinder Head Gasket)

  • 변철진;유승현;윤천한;박종국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.321-325
    • /
    • 2000
  • Gasket of vehicle engine maintains airtight between cylinder head and engine block under high temperature and pressure, and plays important role in heat conduction of engine. And the characterization of the nonlinear behavior of metal gasket fer various bead shapes is very important as basic research for estimation of gasket durability. But it is very difficult to analyze the behavior of gasket In real experiment. In this paper, to analysis effects of the bead shape on the nonlinear behavior of cylinder head gasket under uniform pressure, the virtual experiment using the nonlinear finite element method was performed. Results are analyzed with residual deformation and the sealing pressure. With the increase of the height and the width of bead, the residual deformation and the sealing pressure increase. And if the height is very high and the width is very narrow, the wrinkles are occurred in the gasket while working.

  • PDF

Wind Effects on Tall Buildings with a Porous Double-Skin Façade

  • Shengyu Tian;Cassandra Brigden;Caroline Kingsford;Gang Hu;Robert Ong;K.C.S. Kwok
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.265-276
    • /
    • 2022
  • Double-Skin Facades (DSF) on tall buildings are becoming increasingly common in urban environments due to their ability to provide architectural merit, passive design, acoustic control and even improved structural efficiency. This study aims to understand the effects of porous DSF on the aerodynamic characteristics of tall buildings using wind tunnel tests. High Frequency Force Balance and pressure tests were performed on the CAARC standard tall building model with a variable porous DSF on the windward face. The introduction of a porous DSF did not adversely affect the overall mean forces and moments experienced by the building, with few differences compared to the standard tall building model. There was also minimal variation between the results for the three porosities tested: 50%, 65% and 80%. The presence of a full-height porous DSF was shown to effectively reduce the mean and fluctuating wind pressure on the side face of the building by about 10%, and a porous DSF over the lower half height of the building was almost as effective. This indicates that the porous DSF could be used to reduce the design load on cladding and fixtures on the side faces of tall buildings, where most damage to facades typically occurs.

고속철도의 터널입구 형상변황에 따른 압력파동 현상에 관한 수치적 연구 (Numerical Study on the Effects of Pressure Wave Propagation for Tunnel Entrance Shape Change in High-Speed Railways)

  • 목재균;백남욱;유재석;최윤호
    • 한국자동차공학회논문집
    • /
    • 제5권2호
    • /
    • pp.50-59
    • /
    • 1997
  • When a front head of train enters a tunnel at a high speed, compression wave is generated at tunnel entrance due to the confinement effect and propagated along the tunnel with sound of speed. The propagated compression wave is reflected at tunnel exit due to abrupt pressure change at passage. The reflected wave is expansion pressure wave. And when the rear head of train goes through the tunnel entrance, another expansion pressure wave is generated and propagated along the tunnel. The pressure drop occurs seriously around train when the two expansion pressure waves come cross on train in the tunnel. In order to reduce the pressure drop, the compression wave front must be controlled because the intensity and magnitude of pressure drop is nearly proportional to that of compression wave at tunnel entrance. This study relates to reduction of the pressure wave gradient with respect to tunnel entrance shape change with various kind of angle and rounding. The results show characteristics of wave propagation in tunnel, usefulness of characteristic curve to estimate proper time domain size in numerical study and measuring time in actual experiment. Also rounding is contributed to improve pressure wave front even if its radius is very small at tunnel entrance. In order to improve of pressure wave front at tunnel entrance, proper angle is prefered to rounding with big radius and an angle of around 14$^{\circ}$ is recommended according to this simulations, And it is expected to reduce additional pressure drop in tunnel when the location and the size of the internal space for attendant equipment are considered in advance.

  • PDF