• 제목/요약/키워드: high-mode vibration

검색결과 483건 처리시간 0.033초

배관 Shell Mode 진동 평가방법에 대한 연구 (A Study on Evaluation Method for Piping Shell Mode Vibration)

  • 전창빈;박수일;전형식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1285-1289
    • /
    • 2006
  • In a large diameter piping system, high frequency energy can produce excessive noise, high vibration, and failures of thermo-well, instrumentation, and attached small-bore piping. High frequency energy is generated by flow induced vibration like vortex shedding in orifices and valves. Once this energy is generated, amplification may occur from acoustical and/or structural resonances, resulting in high amplitude vibration and noise. At low frequencies, pipe vibration occurs laterally along the pipe's length, but at higher frequencies, the pipe shell wall vibrates radially across its cross-section. The simple beam analogy which is based on the beam mode vibration can not be applied to evaluate shell mode vibration. ASME OM3 recommends that the stress be measured directly by strain gauge and be evaluated according to the fatigue curves of the piping material. This Paper discusses the excitation and amplification mechanism relevant to high frequency energy generation in piping system, the monitoring method of the shell mode vibration in ASME OM3, the evaluation method generally used in the industry. Finally this paper presents the stress evaluation of the cavitating venturi down stream piping, where high frequency shell mode vibrations were observed during the operation.

  • PDF

유한요소법에 의한 서스펜션 에셈블리의 모드해석에 관한 연구 (A Study on the Modal Analysis of Suspension Assembly by Finite Element Method)

  • 김광식;오재응;조준호;최상렬
    • 소음진동
    • /
    • 제2권3호
    • /
    • pp.223-230
    • /
    • 1992
  • Vibration problems in the Hard Disk Drive which is magnetic recording device have been raised gradually while HDD is required high density and low access time. As a typical thing, lateral bending or sway mode of supension causes tracking error, and therefore it is necessary to identify the accurate vibration characteristics of that mode. In this study, as the solution of vibration problem, decoupling sway mode and vicinity mode is dealt with. Shifting sway mode to high frequency region is studied.

  • PDF

Seismic response of steel reinforced concrete frame-bent plant of CAP1400 nuclear power plant considering the high-mode vibration

  • Biao Liu;Zhengzhong Wang;Bo Zhang;Ningjun Du;Mingxia Gao;Guoliang Bai
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.221-236
    • /
    • 2023
  • In order to study the seismic response of the main plant of steel reinforced concrete (SRC) structure of the CAP1400 nuclear power plant under the influence of different high-mode vibration, the 1/7 model structure was manufactured and its dynamic characteristics was tested. Secondly, the finite element model of SRC frame-bent structure was established, the seismic response was analyzed by mode-superposition response spectrum method. Taking the combination result of the 500 vibration modes as the standard, the error of the base reactions, inter-story drift, bending moment and shear of different modes were calculated. Then, based on the results, the influence of high-mode vibration on the seismic response of the SRC frame-bent structure of the main plant was analyzed. The results show that when the 34 vibration modes were intercepted, the mass participation coefficient of the vertical and horizontal vibration mode was above 90%, which can meet the requirements of design code. There is a large error between the seismic response calculated by the 34 and 500 vibration modes, and the error decreases as the number of modes increases. When 60 modes were selected, the error can be reduced to about 1%. The error of the maximum bottom moment of the bottom column appeared in the position of the bent column. Finally, according to the characteristics of the seismic influence coefficient αj of each mode, the mode contribution coefficient γj•Xji was defined to reflect the contribution of each mode to the seismic action.

디젤 발전소의 T-mode 진동에 관한 실험적 고찰 (An Experimental Study of T-mode Vibration on the Diesel Power Plant)

  • 이돈출;남택근;배용채;김연환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.411-416
    • /
    • 2005
  • Nowadays, diesel power plant using low speed two stroke diesel engine is widely used in islands and restricted areas. Considerations were given to its benefit of high thermal efficiency, reliability and durability compared to the other prime movers. However, various types of engine vibration affect neighboring buildings to their structural vibration. For this, diesel power plant are held liable for the troubles caused by these vibration. These are mainly due to the X- and H-type engine vibrations which we excited by the X- and H- guide force moment. Authors have identified a structural vibration of new pattern called ‘T-mode vibration’ due to the torsional vibration of shafting system. In this paper, T-mode vibration is analyzed through an experimental method based on the global vibration measurement.

  • PDF

모드합성법을 이용한 공작기계구조물의 동적 거동 해석 (Dynamic Analysis of Machine Tool Structure by Mode Synthesis Method)

  • 이영우;성활경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.261-265
    • /
    • 2002
  • In the machining tool avoid vibration problem have an effect on high precision as well as statical and thermal characteristics. Therefore overcome this problem is essential to advance of machine tool and machining skill. Even though vibration arises owing to a variety of causes, in this paper vibration analysis of column as a major part of machine tool structures is presented. At this procedure vibration analysis applied to mode synthesis method using a attachment mode .

  • PDF

재열기 온도조절 급수배관의 진동저감방안 연구 (A Study on Vibration Control for Reheater Attemperator Piping in Power Plant)

  • 전창빈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1-5
    • /
    • 2007
  • A majority of piping vibration problems are induced by internal fluid pulsation; turbulent flow, vortex shedding at internal discontinuities, and pressure pulsation at equipment nozzles. The pulsation at the pressure sources resonates acoustically with the piping and the amplified pressure pulsation can generate shell mode vibration in the piping. Reheater attemperator piping supplies water from feedwater pump to reheater attemperator to control the boiler temperature. In normal operating condition, the high frequency shell mode vibration occurred in the piping with the high level of sound(105 ${\sim}$ 117 dB). The vibration sources are pressure pulsation in the pump nozzle and the frequencies are related to the blade passing frequencies. The objects of this paper are to analyze the cause of the high frequency vibration and to establish corrective actions.

  • PDF

한국형 고속전철의 주행시험을 통한 진동 모드 분석 연구 (A Study on the Vehicle Vibration Mode through the On-line Test for Korean High Speed Train)

  • 박찬경;김영국;김석원;김기환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(I)
    • /
    • pp.156-161
    • /
    • 2003
  • Korean High Speed Train (KHST) has been tested on high speed line in JungBu site since it was developed in 2002. The data acquisition system was used to test successfully the on-line test for proving the dynamic performance of KHST. The recognition of system vibration mode for railway vehicle is essential to understand the characteristics of design for dynamic system and diagnose the dynamic problems of vehicle system during test and operation. But, up to now, there are the efforts to know the system vibration mode within limit of theoretical field only, not experimental approach with systematic method. The theoretical results are too reliable to apply to real design problem, because it is theoretically based on the homogeneous linear system although the real system have the nonlinear characteristics and vary the environmental conditions. Therefor, in this paper, it is proposed the efficient method of vibration analysis for rail vehicle system and this method apply to KHST to recognize the vibration mode characteristics of it. The results show that this method is able to make the system vibration modes for KHST clear.

  • PDF

시운전 시험을 통한 한국형 고속전철 차체진동 특성의 분석 및 평가 (Analysis and Evaluation of Body Vibration Characteristics for Korean High Speed Train through On-line Test)

  • 김영국;김석원;박찬경;김기환;목진용
    • 한국철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.286-293
    • /
    • 2003
  • The prototype of Korean high speed train (HSR350), composed of two power cars, two motorized cars and three trailer cars, has been designed, fabricated and tested. In this paper, the body vibration has been reviewed from the viewpoint of the vehicle's safety and the vibration limits for components and sub-assemblies mounted on the car-body using by the experimental method. And, the dynamic characteristics, such as jerk, natural mode and kinematic mode, have been reviewed. The KHST has been run to 300 km/h in the KTX line and the results of on-line test show that it has no problems in the vehicle's safety and the vibration limits. And the characteristics of body vibrations has been predicted at 350 km/h by fitting curve about the measured acceleration signals.

슬래브의 동특성과 중량충격음의 상관관계에 관한 연구 (Research about correlation of slab vibration mode and heavy-weight floor impact sound)

  • 정진연;이상우;임정빈;정갑철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.839-843
    • /
    • 2008
  • Receiving room's floor impact sound level is been influenced to various factor of slab thickness, room size, structure etc. This study examined the noise of upper part slab and room mode in receiving room to be importance factor that influence in receiving room level among this factors. According to this study, vibration mode in slab and room mode are concentrated on frequency that is high level relatively. This causes bad effect in floor impact sound level. Therefore, method to reduce floor impact sound level is to change vibration mode using slab upper part's resilient material or reduce room mode in receiving room.

  • PDF

200 kg급 압착모드형 ER 마운트의 진동제어성능 고찰 (Investigation on Vibration Control of Squeeze Mode ER Mount Subjected to 200 kg of Static Load)

  • 정우진;정의봉;홍성룡;최승복
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.882-889
    • /
    • 2002
  • This paper presents vibration control performance of a squeeze mode ER mount for high static load. After experimentally investigating the field-dependent damping force under the squeeze mode motion, a squeeze mode ER mount which can support 200 kg of static load is designed and manufactured. Displacement transmissibility of the proposed ER mount is experimentally evaluated in frequency domain with respect to the intensity of the electric field, and a sky-hook control algorithm is designed to attenuate unwanted vibration. Vibration isolation capabilities of the flow mode ER mount and rubber mount are compared to those of the proposed squeeze mode ER mount.