• Title/Summary/Keyword: high-level synthesis

Search Result 397, Processing Time 0.033 seconds

Launch and On-orbit Environment Verification Test of Flight Model of Hinge Driving Type Holding and Release Mechanism based on the Burn Wire Release (열선분리방식을 이용한 힌지구동형 구속분리장치 비행모델의 발사 및 궤도환경 검증시험)

  • Lee, Myeong-Jae;Lee, Yong-Keun;Kang, Suk-Joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.274-280
    • /
    • 2016
  • Hinge driving type holding and release mechanism based on the burn wire release for application of cubesat is main payload of STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project) to be launched at 2015. It has high constraint force, low shock level as well as surmounting drawbacks of conventional nichrome burn wire release method that has relatively low constraint force and system complexity for application of multi-deployable systems. In this paper, we have proposed a flight model of holding and release mechanism for the verification of the constraint force and deployment status signal acquisition. To validate the effectiveness of the flight model, launch and on-orbit environment verification test have been performed.

Design of Advanced Multiplicative Inverse Operation Circuit for AES Encryption (AES 암호화를 위한 개선된 곱셈 역원 연산기 설계)

  • Kim, Jong-Won;Kang, Min-Sup
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2020
  • This paper proposes the design of an advanced S-Box for calculating multiplicative inverse in AES encryption process. In this approach, advanced S-box module is first designed based on composite field, and then the performance evaluation is performed for S-box with multi-stage pipelining architecture. In the proposed S-Box architecture, each module for multiplicative inverse is constructed using combinational logic for realizing both small-area and high-speed. Through logic synthesis result, the designed 3-stage pipelined S-Box shows speed improvement of about 28% compared to the conventional method. The proposed advanced AES S-Box is performed modelling at the mixed level using Verilog-HDL, and logic synthesis is also performed on Spartan 3s1500l FPGA using Xilinx ISE 14.7 tool.

Improved Viability and Proteome Analysis of Lactobacillus fermentum KLB12 upon Heat Stress (Lactobacillus fermentum KLB12의 열 전처리에 따른 열 스트레스 내성 증진 및 프로테옴 변화)

  • 김주현;박미영;김승철;윤현식;소재성
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2003
  • In the previous study, we have isolated several vaginal lactobacilli from Korean woman and selected one of them (KLB12) for further study, which was indentified as Lactobacillus fermentum by sequence analysis of 16S rRNA gene. Formulated L. fermentum KLB12 can be used for ecological treatment of bacterial vaginosis. For pharmaceutical formulation, the spray-drying process is required where stress such as high temperature is routinely applied. In this study, we found that heat stress at 60$^{\circ}C$ for 20∼30min reduced the viable cell population of KLB12 by 10$\sub$6/~10$\sub$9/. However, adaptation of KLB12 cells at 52$^{\circ}C$ made them more thermotolerant upon exposure to 60$^{\circ}C$. The level of thermal protection in RSM (reconstituted skim milk) by adaptation in acid (pH 5), cold (4$^{\circ}C$), ethanol (3%), NaCI (0.3M) was also examined. Although not as efficient as the homologous stress, adaptations in both cold and NaCI gave considerable cross protection against heat stress. When chloramphenicol was added during heat adaptation, adaptation effect was abolished. This suggests that de novo protein synthesis is necessary during the adaptation process. Important changes in proteome during heat adaptation was examined with two-dimensional gel electrophoresis.

Glycolytic and oxidative muscles under acute glucose supplementation differ in their metabolic responses to fatty acyl-CoA synthetase gene suppression

  • Jung, Yun Hee;Bu, So Young
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.70-84
    • /
    • 2022
  • Purpose: Skeletal muscles display significant heterogeneity in metabolic responses, owing to the composition of metabolically distinct fiber types. Recently, numerous studies have reported that in skeletal muscles, suppression of genes related to fatty acid channeling alters the triacylglycerol (TAG) synthesis and switches the energy substrates. However, such responses may differ, depending on the type of muscle fiber. Hence, we conducted in vitro and animal studies to compare the metabolic responses of different types of skeletal muscle fibers to the deficiency of fatty acyl-CoA synthetase (Acsl)6, one of the main fatty acid-activating enzymes. Methods: Differentiated skeletal myotubes were transfected with selected Acsl6 short interfering RNA (siRNA), and C57BL/6J mice were subjected to siRNA to induce Acsl6 deficiency. TAG accumulation and expression levels of insulin signaling proteins in response to acute glucose supplementation were measured in immortalized cell-based skeletal myotubes, oxidative muscles (OM), and glycolytic muscles (GM) derived from the animals. Results: Under conditions of high glucose supplementation, suppression of the Acsl6 gene resulted in decreased TAG and glycogen synthesis in the C2C12 skeletal myotubes. The expression of Glut4, a glucose transporter, was similarly downregulated. In the animal study, the level of TAG accumulation in OM was higher than levels determined in GM. However, a similar decrease in TAG accumulation was obtained in the two muscle types in response to Acsl6 suppression. Moreover, Acsl6 suppression enhanced the phosphorylation of insulin signaling proteins (Foxo-1, mTORc-1) only in GM, while no such changes were observed in OM. In addition, the induction ratio of phosphorylated proteins in response to glucose or Acsl6 suppression was significantly higher in GM than in OM. Conclusion: The results of this study demonstrate that Acsl6 differentially regulates the energy metabolism of skeletal muscles in response to glucose supplementation, thereby indicating that the fiber type or fiber composition of mixed muscles may skew the results of metabolic studies.

Dietary Risk Assessment of Snf7 dsRNA for Coccinella septempunctata

  • Jung, Young Jun;Seol, Min-A;Choi, Wonkyun;Lee, Jung Ro
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.3
    • /
    • pp.210-218
    • /
    • 2021
  • Recently, pest-resistant living modified (LM) crops developed using RNA interference (RNAi) technology have been imported into South Korea. However, the potential adverse effects of unintentionally released RNAi-based LM crops on non-target species have not yet been reported. Coccinella septempunctata, which feeds on aphids, is an important natural enemy insect which can be exposed to the double-stranded RNA (dsRNA) produced by RNAi-based LM plants. To assess the risk of ingestion of Snf7 dsRNA by C. septempunctata, we first identified the species through morphological analysis of collected insects. A method for species identification at the gene level was developed using a specific C. septempunctata 12S rRNA. Furthermore, an experimental model was devised to assess the risk of Snf7 dsRNA ingestion in C. septempunctata. Snf7 dsRNA was mass-purified using an effective dsRNA synthesis method and its presence in C. septempunctata was confirmed after treatment with purified Snf7 dsRNA. Finally, the survival rate, development time, and dry weight of Snf7 dsRNA-treated C. septempunctata were compared with those of GFP and vATPase A dsRNA control treatments, and no risk was found. This study illustrates an effective Snf7 dsRNA synthesis method, as well as a high-concentration domestic insect risk assessment method which uses dsRNA to assess the risk of unintentional released of LM organisms against non-target species.

Genome Analysis and Optimization of Caproic Acid Production of Clostridium butyricum GD1-1 Isolated from the Pit Mud of Nongxiangxing Baijiu

  • Min Li;Tao Li;Jia Zheng;Zongwei Qiao;Kaizheng Zhang;Huibo Luo;Wei Zou
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1337-1350
    • /
    • 2023
  • Caproic acid is a precursor substance for the synthesis of ethyl caproate, the main flavor substance of nongxiangxing baijiu liquor. In this study, Clostridium butyricum GD1-1, a strain with high caproic acid concentration (3.86 g/l), was isolated from the storage pit mud of nongxiangxing baijiu for sequencing and analysis. The strain's genome was 3,840,048 bp in length with 4,050 open reading frames. In addition, virulence factor annotation analysis showed C. butyricum GD1-1 to be safe at the genetic level. However, the annotation results using the Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server predicted a deficiency in the strain's synthesis of alanine, methionine, and biotin. These results were confirmed by essential nutrient factor validation experiments. Furthermore, the optimized medium conditions for caproic acid concentration by strain GD1-1 were (g/l): glucose 30, NaCl 5, yeast extract 10, peptone 10, beef paste 10, sodium acetate 11, L-cysteine 0.6, biotin 0.004, starch 2, and 2.0% ethanol. The optimized fermentation conditions for caproic acid production by C. butyricum GD1-1 on a single-factor basis were: 5% inoculum volume, 35℃, pH 7, and 90% loading volume. Under optimal conditions, the caproic acid concentration of strain GD1-1 reached 5.42 g/l, which was 1.40 times higher than the initial concentration. C. butyricum GD1-1 could be further used in caproic acid production, NXXB pit mud strengthening and maintenance, and artificial pit mud preparation.

Effectiveness of low-level laser therapy on recovery from neurosensory disturbance after sagittal split ramus osteotomy: a systematic review and meta-analysis

  • Firoozi, Parsa;Keyhan, Seied Omid;Kim, Seong-Gon;Fallahi, Hamid Reza
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.41.1-41.11
    • /
    • 2020
  • Background: Orthognathic surgery such as bilateral sagittal split ramus osteotomy (BSSRO) for the treatment of mandibular deformities is one of the most common procedures in maxillofacial operations that may lead to neurosensory disturbance. In this study, we aimed to evaluate the effectiveness of low-level laser therapy (LLLT) on augmenting recovery of neurosensory disturbance of inferior alveolar nerve (IAN) in patients who underwent BSSRO surgery. Methods: A comprehensive literature search was conducted by two independent authors in PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, Embase, and Google Scholar electronic databases. Besides, a manual search of all textbooks and relevant articles were conducted. Searches took place in August 2020 and were limited to published and peer-reviewed articles from 2000 to 2020. All analysis was performed using the comprehensive meta-analysis (CMA) and the STATA MP (version:16) software. The weighted mean difference (WMD) using the inverse variance method and the standard mean difference (SMD) was considered for continuous variables. Results: Seventy-four papers were retrieved after removing duplicate studies and finally, eight studies were assessed for qualitative synthesis and five for meta-analysis. Totally, 94 patients were included in the meta-analysis. Based on the meta-analysis, it was shown that LLLT was not effective in a short interval (0 to 48 h) after surgery, but in a period of more than 1 month after surgery, the positive results of treatment can be observed strikingly. Also, LLLT side/group showed no significant difference in some aspects of neurosensory recovery such as thermal sensation compared to the placebo side/group. Conclusions: The meta-analysis of randomized controlled trials revealed that LLLT generally improves IAN sensory disturbance caused by BSSRO. Further high-quality clinical trials with longer follow-up periods and larger sample sizes are recommended.

Effects of Vitamin E on the Metallothionein Synthesis in Streptozotocin-induced Diabetic Rats (Streptozotocin유발 당뇨쥐에 있어서 Metallothionein 합성에 미치는 비타민 E의 영향)

  • 이순재;최원경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.183-194
    • /
    • 1995
  • The purpose of this study was to investigate the effect of vitamin E on the synthesis of the metallothionein in the liver of streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley male rats($220{\pm}10mg$) were randomly assigned to one control and three STZ-diabetic groups. Diabetic groups were classified to STZ-0E(vitamine E free diet), STZ-40E(40mg vitamin E/kg of diet) and STZ-400E(400mg vitamin E/kg of diet) according to the level of vitamin E supplementation. Blood glucose levels of STZ-diabetic rats were three times higher than that of control. The contents of vitamin E in liver were lower signifciantly STZ-0E, STZ-40E groups by 50%, 36% compared with that of control. Lipid peroxide values(LPO) in liver were higher 5.6 and 2.5 times in STZ-0E and STZ-40E groups than that of control. Plasma cortisol levels were higher STZ-0E and STZ-40E groups compared with those of control, but cortisol levels were lower significantly in STZ-400E group compared with those of the STZ-0E and the STZ-40E groups. The plasma insulin levels were lower in all three STZ-diabetic group compared with that of control, but were not affected by the level of dietary vitamin E. The metallothionein (MT) contents in liver, kidney and small intestine were five times higher in STZ-0E, STZ-40E and STZ-400E compared with that of control, but STZ-400E group was lower in the MT contents in tissues compared with that of STZ-40E group. Zn-MT peak in STZ-diabetic rats liver increased than that of control by Sephadex G-75, and Zn-MT peak divided into MTI and MTII peaks by DEAE Sephadex A-25 column chromatography. The present results indicate that STZ-induced diabetic rats are more sensitive to oxidative stress, leading to the acceleration of lipid peroxidation process, which can be more promoted low level of dietary vitamin E. And the result may that increase synthesis of MT induced in the liver of diabetic rats increased so it can be sure that the diabetes is one of the MT induce factor by free radical generation. And high vitamin E supplementation reduced total MT contents of liver, kidney and small intestine and the peak of purified Zn-MT. Through the results of these experiments, we can conclude that MT might be the free radical scavenger.

  • PDF

A study on the Cost-effective Architecture Design of High-speed Soft-decision Viterbi Decoder for Multi-band OFDM Systems (Multi-band OFDM 시스템용 고속 연판정 비터비 디코더의 효율적인 하드웨어 구조 설계에 관한 연구)

  • Lee, Seong-Joo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.90-97
    • /
    • 2006
  • In this paper, we present a cost-effective architecture of high-speed soft-decision Viterbi decoder for Multi-band OFDM(MB-OFDM) systems. In the design of modem for MB-OFDM systems, a parallel processing architecture is general]y used for the reliable hardware implementation, because the systems should support a very high-speed data rate of at most 480Mbps. A Viterbi decoder also should be designed by using a parallel processing structure and support a very high-speed data rate. Therefore, we present a optimized hardware architecture for 4-way parallel processing Viterbi decoder in this paper. In order to optimize the hardware of Viterbi decoder, we compare and analyze various ACS architectures and find the optimal one among them with respect to hardware complexity and operating frequency The Viterbi decoder with a optimal hardware architecture is designed and verified by using Verilog HDL, and synthesized into gate-level circuits with TSMC 0.13um library. In the synthesis results, we find that the Viterbi decoder contains about 280K gates and works properly at the speed required in MB-OFDM systems.

A TMT-based quantitative proteomic analysis provides insights into the protein changes in the seeds of high- and low- protein content soybean cultivars

  • Min, Cheol Woo;Gupta, Ravi;Truong, Nguyen Van;Bae, Jin Woo;Ko, Jong Min;Lee, Byong Won;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.209-217
    • /
    • 2020
  • The presence of high amounts of seed storage proteins (SSPs) improves the overall quality of soybean seeds. However, these SSPs pose a major limitation due to their high abundance in soybean seeds. Although various technical advancements including mass-spectrometry and bioinformatics resources were reported, only limited information has been derived to date on soybean seeds at proteome level. Here, we applied a tandem mass tags (TMT)-based quantitative proteomic analysis to identify the significantly modulated proteins in the seeds of two soybean cultivars showing varying protein contents. This approach led to the identification of 5,678 proteins of which 13 and 1,133 proteins showed significant changes in Daewon (low-protein content cultivar) and Saedanbaek (high-protein content cultivar) respectively. Functional annotation revealed that proteins with increased abundance in Saedanbaek were mainly associated with the amino acid and protein metabolism involved in protein synthesis, folding, targeting, and degradation. Taken together, the results presented here provide a pipeline for soybean seed proteome analysis and contribute a better understanding of proteomic changes that may lead to alteration in the protein contents in soybean seeds.