• Title/Summary/Keyword: high-field model

Search Result 2,233, Processing Time 0.031 seconds

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

Advanced Circuit-Level Model of Magnetic Tunnel Junction-based Spin-Torque Oscillator with Perpendicular Anisotropy Field

  • Kim, Miryeon;Lim, Hyein;Ahn, Sora;Lee, Seungjun;Shin, Hyungsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.556-561
    • /
    • 2013
  • Interest in spin-torque oscillators (STOs) has been increasing due to their potential use in communication devices. In particular the magnetic tunnel junction-based STO (MTJ-STO) with high perpendicular anisotropy is gaining attention since it can generate high output power. In this paper, a circuit-level model for an in-plane magnetized MTJ-STO with partial perpendicular anisotropy is proposed. The model includes the perpendicular torque and the shift field for more accurate modeling. The bias voltage dependence of perpendicular torque is represented as quadratic. The model is written in Verilog-A, and simulated using HSPICE simulator with a current-mirror circuit and a multi-stage wideband amplifier. The simulation results show the proposed model can accurately replicate the experimental data such that the power increases and the frequency decreases as the value of the perpendicular anisotropy gets close to the value of the demagnetizing field.

Particle Image Velocimetry Measurement of Unsteady Turbulent Flow around Regularly Arranged High-Rise Building Models

  • Sato, T.;Hagishima, A.;Ikegaya, N.;Tanimoto, J.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.105-113
    • /
    • 2013
  • Recent studies proved turbulent flow properties in high-rise building models differ from those in low-rise building models by comparing turbulent statistics. Although it is important to understand the flow characteristics within and above high-rise building models in the study of urban environment, it is still unknown and under investigation. For this reason, we performed wind tunnel experiment using Particle Image Velocimetry (PIV) to investigate and identify the turbulent flow properties and characteristic flow patterns in high-rise building models. In particular, we focus on instantaneous flow field near the canopy and extracted flow field when homogeneous flow field were observed. As a result, six characteristic flow patterns were identified and the relationship between these flow patterns and turbulent organized structure were shown.

Water Quality Model Development for Loading Estimates from Paddy Field (논에서의 오염부하 예측을 위한 범용모형 개발)

  • Jeon, Ji-Hong;Yoon, Chun-Gyeong;Hwang, Ha-Sun;Yoon, Kwang-Sik
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.579-582
    • /
    • 2003
  • Water quality model applicable paddy field was developed using field experiment during $1999{\sim}2002$. This model involves inputs from fertilization and sediment release as dirac delta function and continuous source function, respectively, and can simulate various processes such as ponded depth, surface drainage, total nitrogen concentration and total phosphorus concentration in a daily basis. Water quality model for paddy field developed in this study is simply, needs little parameters, but appeared high applicability to evaluate paddy filed drainage.

  • PDF

Assessment on Natural Frequencies of Structures using Field Measurement and FE Analysis

  • Kim, Do Hyun;Kim, Ji Young
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.305-310
    • /
    • 2014
  • Wind-induced responses of a structure are often evaluated through dynamic analysis, where measured wind forces obtained from a wind-tunnel test and dynamic properties obtained from a FE (Finite Element) model are utilized. However, the FE model generally shows considerable discrepancies in the estimation of natural frequencies compared to field measurements due to some assumptions and simplifications. In this paper, a calibration method that can improve the estimation of natural frequencies in the FE model is proposed, and specific cases are studied for its validity with comparison to the field measurement results.

Experiment of Flux pump for High Temperature Superconductor Insert coils of NMR magnets (NMR 자석용 고온 초전도 내부 코일을 위한 플럭스 폄프에 대한 실험)

  • 정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.15-20
    • /
    • 2001
  • This paper describes a model flux pump experiment recently performed at the MIT Francis Bitter Magnet Laboratory. The results of the model flux pump will be used in the development of a prototype flux pump that will be couple to a high-temperature superconductor (HTS) insert coil of a high-field NMR (Nuclear Magnetic Resonance) magnet, Such an HTS insert is unlikely to operate in persistent model because of the conductors low index(n) The flux pump can compensate fro field decay in the HTS insert coil and make the insert operate effectively in persistent mode . The flux pump, comprised essentially of a transformer an two switches. all made of superconductor, transfers into the insert coil a fraction of a magnetic energy that is first introduced in the secondary circuit of the transformer by a current supplied to the primary circuit. A model flux pump has been designed. fabricated, and operated to demonstrate that a flux pump can indeed supply a small metered current into a load superconducting magnet. A current increment in the range of microamperes has been measured in the magnet after each pumping action. The superconducting model flux pump is made of Nb$_3$ Sn tape, The pump is placed in a gaseous environment above the liquid helium level to keep its heat dissipation from directly discharged in the liquid: the effluent helium vapor maintains the thermal stability of the flux pump.

  • PDF

Estimate of Flashover Position from E-field Calculation along Electrode Gap Distance (진공인터럽터 극간 랩거리 조정에 따른 각 부위의 전계값 계산을 통한 진공인터럽터 내부 절연파괴부위 예측)

  • Yoon, Jae-Hun;Lim, Kee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.23-23
    • /
    • 2010
  • Because of power consumption increase, global warming, and limitation of installation, not only high reliability and interruption capability but also compact and light power apparatuses are needed. In this paper, various models that short and long gap distance were used to analyze E field of each model. Calculation value was estimated of flashover position. As a result, short and long gap distance that vacuum interrupter inner between move electrode and fix electrode not coincided flashover position of each model. short gap distance estimated flashover position at electrode edge. but long gap distance model confirmed $E_{max}$ value at center shield. in this paper was compared electric field value. and estimated of flashover position from electric field calculation.

  • PDF

The Influence of the Interplanetary Magnetic Field (IMF)-Dependent Ionospheric Convection on the Thermospheric Dynamics

  • Kwak, Y.S.;Ahn, B.H.;Richmond, A.D.
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.34-34
    • /
    • 2003
  • To better understand how high-latitude electric fields influence thermospheric dynamics, we study winds in the high-latitude lower thermosphere using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model of the National Center for Atmospheric Research (NCAR/TIEGCM). In order to compare with Wind Imaging Interferometer (WINDII) observations the model is run for the conditions of 1992-1993 southern summer. The association of the model results with the interplanetary magnetic field (IMF) is also examined to determine the influences of the IMF-dependent ionospheric convection on the winds. The wind patterns show good agreement with the WINDII observations, although the model wind speeds are generally weaker than the observations. It is confirmed that the influences of high-latitude ionospheric convection on summertime thermospheric winds are seen down to 105 km. For negative and positive IMF By the difference winds, with respect to the wind during null IMF conditions, show significantly strong anticyclonic and cyclonic vortices, respectively, down to 105 km. For positive IMF Bz the difference winds are largely confined to the polar cap, while for negative IMF Bz they extend to subauroral latitudes. The IMF Bz-dependent diurnal wind component is strongly correlated with the corresponding component of ionospheric convection velocity down to 108 km and is largely rotational. The influence of IMF By on the lower thermospheric summertime zonal-mean zonal wind is substantial at high latitudes, with maximum wind speeds being 60 m/s at 130 km around 77 magnetic latitude.

  • PDF

Analysis of a Dynamic Rig Test Model for Truck Chassis Systems (트럭 샤시 시스템의 동적 리그시험모텔 해석)

  • 임재혁;성현수;임세영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.94-100
    • /
    • 2004
  • A dynamic finite element analysis of a rig test model for truck chassis systems is conducted to establish an appropriate model designed to predict the fatigue life. A reference Belgian road input, which has been obtained from a field test, is imposed on the finite element model in the modal finite element analysis, and the resulting strain history is employed for the prediction of the fatigue life. This is compared with the prediction based upon the strain history measured in the field test. The two agree with each other within the limitation of the field data and the input data to the model. The high frequency responses over 50 Hz are confirmed to be negligible as far as their effect on the fatigue life is concerned.

Precision Position and Gap Control for High Density Optical Head Using Bimorph PZT (Bimorph PZT를 이용한 고밀도 광학헤드의 정밀위치 및 간극제어)

  • 권영기;홍어진;박태욱;박노철;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.888-893
    • /
    • 2004
  • This paper proposed a dual actuator using bimorph PZT for information storage device based on prove array NSOM(Near-field Scanning Optical Microscopy). The gap between the media and the optical head should be maintained within the optical tolerance. Therefore, a new actuator having high sensitivity is required. Bimorph PZT, which has fast access time and high sensitivity characteristic, is suitable for this precise actuating system. This paper is focused on derivation of mathematical model of dual bimorph PZT actuator and control algorithm. Hamilton's principle was used for mathematical model. The model is verified by FEA(Finite Element Analysis), and compared with experimental results. Different control algorithms were used f3r two bimorph PZT actuating same direction and opposite direction. The gap between recording media and optical head was controlled within 20nm in experiment.

  • PDF