• Title/Summary/Keyword: high-dimensional function

Search Result 417, Processing Time 0.026 seconds

Improvements on the Three-Dimensional Positioning of High Resolution Stereo Satellite Imagery (고해상도 스테레오 위성영상의 3차원 정확도 평가 및 향상)

  • Jeong, In-Jun;Lee, Chang-Kyung;Yun, Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.617-625
    • /
    • 2014
  • The Rational Function Model has been used as a replacement sensor model in most commercial photogrammetric systems due to its capability of maintaining the accuracy of the physical sensor models. Although satellite images with rational polynomial coefficients have been used to determine three-dimensional position, it has limitations in the accuracy for large scale topographic mapping. In this study, high resolution stereo satellite images, QuickBird-2, were used to investigate how much the three-dimensional position accuracy was affected by the No. of ground control points, polynomial order, and distribution of GCPs. As the results, we can confirm that these experiments satisfy the accuracy requirements for horizontal and height position of 1:25,000 map scale.

Optimization of Flap Shape and Position for Two-dimensional High Lift Device (2차원 고양력장치의 플랩 형상 및 위치 최적화)

  • Park, Youngmin;Kang, Hyoungmin;Chung, Jindeog;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • Numerical optimization of two dimensional high lift configuration was performed with flow solver and optimization method based on RSM(Response Surface Model). Navier-Stokes solver with Spalart-Allmaras turbulence model was selected for the simulation of highly complex and separated flows on the flap. For the simultaneous optimization of both flap shape and setting (gap/overlap), 10 design variables (eight variables for flap shape variation and two variables for flap setting) were chosen. In order to generate the response surface model, 128 experimental points were selected for 10 design variables. The objective function considering maximum lift coefficient, lift to drag ratio and lift coefficient at specific angle of attack was selected to reduce flow separation on the flap surface. The present method was applied to two dimensional fowler flap in landing configuration. After applying the present method, it was shown that the optimized high lift configuration had less flow separation on the flap surface and lift to drag ratio was suppressed over entire angle of attack range.

Characteristics of the 2-D SSIMT using a CMOS Process (CMOS 공정을 이용한 2차원 SSIMT의 특성)

  • Song, Youn-Gui;Ryu, Ji-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.697-700
    • /
    • 2007
  • A novel 2-Dimensional Suppressed Sidewall Injection Magnetotransistor (SSIMT) with high linearity has been fabricated on the standard CMOS technology and experimentally verified. The novel 2-Dimensional SSIMT overcomes the restriction of the standard CMOS technology. Experimental results of the fabricated 2-Dimensional SSIMT show that the variation of each collector output currents are extremely linear as a function of magnetic field from -200mT to 200mT at $I_B = 1 mA,\;V_{CE} = 5 V\;and\;V_{SE} = 5 V$. The relative sensitivity shows up to 13 %/T. The measured nonlinearity of the fabricated device is about 0.9%.

Development of Three-Dimensional Ion Implantation Simulator Using Analytical Model (해석모델을 이용한 3차원 이온주입 시뮬레이터 개발)

  • 박화식;이준하;황호정
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.43-50
    • /
    • 1993
  • Three-dimensional simulator for the ion implantation process is developed. The simulator based on an analytical model which would be a choice with high computational efficiency and accuracy. This is an important issue for the simulation of a numerous number of processing steps required in the fabrication of ULSI or GSI. The model can explain scattering and bulk channeling mechanism (1D). It can also explain depth dependent lateral diffusion effect(2D) and mask effect(3D). The model is consist of one-dimensional JPD(Joined Pearson Distribution) function and two-dimensional modified Gaussian functions. Final implanted profiles under typical mask structures such as hole, line and island structure are obtained with varying ion species.

  • PDF

Two-dimensional High Viscous Flow between Two Close Rotating Cylinders (근접하여 회전하는 두 원통 사이의 고 점성 윤활 유동)

  • 이승재;정재택
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.142-149
    • /
    • 2000
  • Two dimensional slow viscous flow around two counter-rotating equal cylinders is Investigated based on Stokes' approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns around the cylinders are shown and the pressure distribution In the flow field is determined. By Integrating the stress distribution on the cylinder, the force and the moment exerted on the cylinder are calculated. The flow rate through the gap between the two cylinders is determined as the distance between two cylinders vary. It Is also revealed that the velocity at the far field has finite non-zero value. Special attention is directed to the case of very small distances between two cylinders by way of the lubrication theory.

  • PDF

Mathcad program as a useful tool for the teaching and studying the sport biomechanics (운동역학의 교육과 연구용 도구로서 Mathcad의 유용성)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.301-311
    • /
    • 2004
  • The purpose of this study was to verify the usefulness of the Mathcad program as a tool for the studying and teaching the sport biomechanics. A projectile motion was analyzed because it is the one of the most popular motion in sports activities. A 3 dimensional CG data for the high jump bar clear phase was used to calculate the initial velocity vector of the CG. Linear regression function and other functions such as cubic spline and derivative of Mathcad were used to calculate this vector. Finally, the approach angle to the bar and peak jump height was calculated. Programming in Mathcad was relatively easy compare to traditional computer language such as Fortran and C, because of the unique documentation method of Mathcad. Additionally the 2 and 3 dimensional graph function was very easy and useful to describe the mechanical data. If the use of Mathcad program is more popular in the field of sport biomechanics, it could greatly contribute to overcome the limit of research caused by the lack of proper programming ability.

Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow (하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발)

  • Han, Kun-Yeun;Baek, Chang-Hyun;Choi, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF

Building Korean Head-related Transfer Function Database (한국형 머리전달함수 데이터베이스 구축)

  • Son, Daehyuk;Park, Youngjin;Park, Yoonsik;Jang, Sei-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.282-288
    • /
    • 2014
  • Three-dimensional multimedia industry such as 3D TV, movie and broadcast has been developed vividly. For generating 3D contents with high quality, virtual auditory display, so called VAD, is being researched to offer more realistic experience to listeners. When people render VAD using headphones or two speakers, head-related transfer function(HRTF) plays a key role. The best solution is measuring all individuals' HRTFs, but it is hard to measure all listeners' HRTFs. To overcome this difficulty, many research groups have tried to construct their own measurement system and to build HRTF databases. However, some of them have not enough subjects or spatial resolution and they are mainly focused on Caucasian. There exists difference between Korean and Caucasian in a view of physical features. In other words, if Koreans hear three-dimensional sound rendered by HRTF database based on Caucasian, performance might be hindered. To verify this possibility and remedy the drawbacks, construction of new HRTF database aimed at Korean is needed. Therefore, our laboratory built HRTF measurement system which can measure HRTF of three-dimensional space with dense spatial resolution. With this system, 55 Korean males and 45 females' HRTFs were measured and Korean HRTF database was built based on these data.

A new high-order response surface method for structural reliability analysis

  • Li, Hong-Shuang;Lu, Zhen-Zhou;Qiao, Hong-Wei
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.779-799
    • /
    • 2010
  • In order to consider high-order effects on the actual limit state function, a new response surface method is proposed for structural reliability analysis by the use of high-order approximation concept in this study. Hermite polynomials are used to determine the highest orders of input random variables, and the sampling points for the determination of highest orders are located on Gaussian points of Gauss-Hermite integration. The cross terms between two random variables, only in case that their corresponding percent contributions to the total variation of limit state function are significant, will be added to the response surface function to improve the approximation accuracy. As a result, significant reduction in computational cost is achieved with this strategy. Due to the addition of cross terms, the additional sampling points, laid on two-dimensional Gaussian points off axis on the plane of two significant variables, are required to determine the coefficients of the approximated limit state function. All available sampling points are employed to construct the final response surface function. Then, Monte Carlo Simulation is carried out on the final approximation response surface function to estimate the failure probability. Due to the use of high order polynomial, the proposed method is more accurate than the traditional second-order or linear response surface method. It also provides much more efficient solutions than the available high-order response surface method with less loss in accuracy. The efficiency and the accuracy of the proposed method compared with those of various response surface methods available are illustrated by five numerical examples.

Research into Head-body Thermal Bending for High-accuracy Thermal Error Compensation (고정도 열변위보정을 위한 주축대의 열적굽힘에 대한 연구)

  • Kim, Tae-Weon;Hah, Jae-Yong;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.56-64
    • /
    • 2002
  • Machine tools are engineered to give high dimensional accuracy in machining operation. However, errors due to thermal effects degrade dimensional accuracy of machine tools considerably, and many machine tools are equipped with thermal error compensation function. In general, thermal errors can be generated in the angular directions as well as linear directions. Among them, thermal errors in the angular directions contribute a large amount of error components in the presence of offset distance as in the case of Abbe error. Because most of thermal error compensation function is based on a good correlation between temperature change and thermal deformation, angular thermal deformation is often to be the most difficult hurdle for enhancing compensation accuracy. In this regard, this paper investigates the effect of thermal bending to total thermal error and gives how to deal with thermally induced bending effects in thermal error compensation.