• Title/Summary/Keyword: high-dimensional

Search Result 5,946, Processing Time 0.035 seconds

Extended High Dimensional Clustering using Iterative Two Dimensional Projection Filtering (반복적 2차원 프로젝션 필터링을 이용한 확장 고차원 클러스터링)

  • Lee, Hye-Myeong;Park, Yeong-Bae
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.573-580
    • /
    • 2001
  • The large amounts of high dimensional data contains a significant amount of noises by it own sparsity, which adds difficulties in high dimensional clustering. The CLIP is developed as a clustering algorithm to support characteristics of the high dimensional data. The CLIP is based on the incremental one dimensional projection on each axis and find product sets of the dimensional clusters. These product sets contain not only all high dimensional clusters but also they may contain noises. In this paper, we propose extended CLIP algorithm which refines the product sets that contain cluster. We remove high dimensional noises by applying two dimensional projections iteratively on the already found product sets by CLIP. To evaluate the performance of extended algorithm, we demonstrate its effectiveness through a series of experiments on synthetic data sets.

  • PDF

Similarity Measure Design on High Dimensional Data

  • Nipon, Theera-Umpon;Lee, Sanghyuk
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • Designing of similarity on high dimensional data was done. Similarity measure between high dimensional data was considered by analysing neighbor information with respect to data sets. Obtained result could be applied to big data, because big data has multiple characteristics compared to simple data set. Definitely, analysis of high dimensional data could be the pre-study of big data. High dimensional data analysis was also compared with the conventional similarity. Traditional similarity measure on overlapped data was illustrated, and application to non-overlapped data was carried out. Its usefulness was proved by way of mathematical proof, and verified by calculation of similarity for artificial data example.

NBR-Safe Transform: Lower-Dimensional Transformation of High-Dimensional MBRs in Similar Sequence Matching (MBR-Safe 변환 : 유사 시퀀스 매칭에서 고차원 MBR의 저차원 변환)

  • Moon, Yang-Sae
    • Journal of KIISE:Databases
    • /
    • v.33 no.7
    • /
    • pp.693-707
    • /
    • 2006
  • To improve performance using a multidimensional index in similar sequence matching, we transform a high-dimensional sequence to a low-dimensional sequence, and then construct a low-dimensional MBR that contains multiple transformed sequences. In this paper we propose a formal method that transforms a high-dimensional MBR itself to a low-dimensional MBR, and show that this method significantly reduces the number of lower-dimensional transformations. To achieve this goal, we first formally define the new notion of MBR-safe. We say that a transform is MBR-safe if a low-dimensional MBR to which a high-dimensional MBR is transformed by the transform contains every individual low-dimensional sequence to which a high-dimensional sequence is transformed. We then propose two MBR-safe transforms based on DFT and DCT, the most representative lower-dimensional transformations. For this, we prove the traditional DFT and DCT are not MBR-safe, and define new transforms, called mbrDFT and mbrDCT, by extending DFT and DCT, respectively. We also formally prove these mbrDFT and mbrDCT are MBR-safe. Moreover, we show that mbrDFT(or mbrDCT) is optimal among the DFT-based(or DCT-based) MBR-safe transforms that directly convert a high-dimensional MBR itself into a low-dimensional MBR. Analytical and experimental results show that the proposed mbrDFT and mbrDCT reduce the number of lower-dimensional transformations drastically, and improve performance significantly compared with the $na\"{\i}ve$ transforms. These results indicate that our MBR- safe transforms provides a useful framework for a variety of applications that require the lower-dimensional transformation of high-dimensional MBRs.

Study of a Three-Dimensional and Multi-Functional Urban High-Rise Complex in the High-Density Environment: Design Practice of Yiwu World Trade Center

  • Li, Linxue;Hou, Miaomiao;Zhang, Qi
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • Facing the challenges of urban form and space quality in a high-density environment, the paper puts forward the development trend of three-dimensional and multi-functional design for an urban high-rise complex, and analyzes the design methods of establishing an urban landmark, including multi-functional composition, three-dimensional space integration, three-dimensional traffic organization and energy flow programming. Meanwhile, combined with the specific design case of Yiwu World Trade Center, the practical experience of designing a high-rise complex in China's medium-sized cities is analyzed.

High-Dimensional Clustering Technique using Incremental Projection (점진적 프로젝션을 이용한 고차원 글러스터링 기법)

  • Lee, Hye-Myung;Park, Young-Bae
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.568-576
    • /
    • 2001
  • Most of clustering algorithms data to degenerate rapidly on high dimensional spaces. Moreover, high dimensional data often contain a significant a significant of noise. which causes additional ineffectiveness of algorithms. Therefore it is necessary to develop algorithms adapted to the structure and characteristics of the high dimensional data. In this paper, we propose a clustering algorithms CLIP using the projection The CLIP is designed to overcome efficiency and/or effectiveness problems on high dimensional clustering and it is the is based on clustering on each one dimensional subspace but we use the incremental projection to recover high dimensional cluster and to reduce the computational cost significantly at time To evaluate the performance of CLIP we demonstrate is efficiency and effectiveness through a series of experiments on synthetic data sets.

  • PDF

A Basic Research in Three-Dimensional Residential Open Building;Focused on the of High Story Height in PLUS 50 experimental housing (입체형 오픈 하우징에 관한 기초적 연구;한국건설기술연구원 PLUS 50 실험주택의 고층고 주호를 중심으로)

  • Kim, Soo-Am;Lee, Sung-Ok;Lee, Bo-Ra;Hwang, Eun-Kyung;Lim, Seok-Ho
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2006.11a
    • /
    • pp.131-135
    • /
    • 2006
  • Many alternatives on the residential open building have been researched for corresponding high flexibility and possibility of remodeling in Korea as well. However, existing researches only dealt with two-dimensional floor plan. All buildings as well as apartment housing must have been examined various spatial aspect, three-dimensional not two-dimensional. It will examine basic method of three-dimensional flexible unit system to add to three-dimensional usage method overcoming these limitations. The purpose of this study is to propose the system of three-dimensional residential open building in Korea after examining possibility of flexibility of residential open building in 1.5 times of existing floor height.

  • PDF

Dimension Reduction Methods on High Dimensional Streaming Data with Concept Drift (개념 변동 고차원 스트리밍 데이터에 대한 차원 감소 방법)

  • Park, Cheong Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.8
    • /
    • pp.361-368
    • /
    • 2016
  • While dimension reduction methods on high dimensional data have been widely studied, research on dimension reduction methods for high dimensional streaming data with concept drift is limited. In this paper, we review incremental dimension reduction methods and propose a method to apply dimension reduction efficiently in order to improve classification performance on high dimensional streaming data with concept drift.

A Distance-based Outlier Detection Method using Landmarks in High Dimensional Data (고차원 데이터에서 랜드마크를 이용한 거리 기반 이상치 탐지 방법)

  • Park, Cheong Hee
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.9
    • /
    • pp.1242-1250
    • /
    • 2021
  • Detection of outliers deviating normal data distribution in high dimensional data is an important technique in many application areas. In this paper, a distance-based outlier detection method using landmarks in high dimensional data is proposed. Given normal training data, the k-means clustering method is applied for the training data in order to extract the centers of the clusters as landmarks which represent normal data distribution. For a test data sample, the distance to the nearest landmark gives the outlier score. In the experiments using high dimensional data such as images and documents, it was shown that the proposed method based on the landmarks of one-tenth of training data can give the comparable outlier detection performance while reducing the time complexity greatly in the testing stage.

Multivariate Procedure for Variable Selection and Classification of High Dimensional Heterogeneous Data

  • Mehmood, Tahir;Rasheed, Zahid
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.575-587
    • /
    • 2015
  • The development in data collection techniques results in high dimensional data sets, where discrimination is an important and commonly encountered problem that are crucial to resolve when high dimensional data is heterogeneous (non-common variance covariance structure for classes). An example of this is to classify microbial habitat preferences based on codon/bi-codon usage. Habitat preference is important to study for evolutionary genetic relationships and may help industry produce specific enzymes. Most classification procedures assume homogeneity (common variance covariance structure for all classes), which is not guaranteed in most high dimensional data sets. We have introduced regularized elimination in partial least square coupled with QDA (rePLS-QDA) for the parsimonious variable selection and classification of high dimensional heterogeneous data sets based on recently introduced regularized elimination for variable selection in partial least square (rePLS) and heterogeneous classification procedure quadratic discriminant analysis (QDA). A comparison of proposed and existing methods is conducted over the simulated data set; in addition, the proposed procedure is implemented to classify microbial habitat preferences by their codon/bi-codon usage. Five bacterial habitats (Aquatic, Host Associated, Multiple, Specialized and Terrestrial) are modeled. The classification accuracy of each habitat is satisfactory and ranges from 89.1% to 100% on test data. Interesting codon/bi-codons usage, their mutual interactions influential for respective habitat preference are identified. The proposed method also produced results that concurred with known biological characteristics that will help researchers better understand divergence of species.